首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

2.
Mealybugs have an association with prokaryotic endosymbionts that are located in specialized cells called bacteriocytes. In order to compare the phylogeny of the host with that of the previously published phylogeny of the endosymbionts, 3.1 to 3.2 kilobase DNA fragments containing mitochondrial cytB (part), nd1,16S ribosomal DNA(rDNA), and 12S rDNA (part) were amplified and sequenced. A phylogenetic analysis of the data and a comparison with the trees obtained from endosymbiont genes and host 18S and 28S rDNA indicated that all the trees were similar. This result is consistent with an infection of a mealybug ancestor with a precursor of the endosymbiont followed by the vertical transmission of the endosymbiont to progeny. Comparison of the guanine + cytosine (G + C) contents of the mealybug mitochondrial genes with the same genes from other members of Sternorrhyncha and Arthropoda indicated that the mealybug genes had unusually low G + C contents in their DNAs (10.2 to 11.1 mol%).  相似文献   

3.
ABSTRACT. It is generally accepted that in symbiotic systems involving algal species as cellular endobionts there is some positive benefit to the host organisms. In this paper special consideration is given to the larger foraminifera, protozoa that serve as very useful model systems for the study of aspects of inter/intracellular integration and adaptation—living, as they do, in nutrient-limited but well illuminated shallow tropical seas and containing endosymbiotic algae in abundance. A considerable amount of information is now available on physiological as well as morphological adaptations of the host species to pigmented protists representing diverse algal divisions (phyla). Brief mention is also made of bacterial endosymbionts of certain ciliates.  相似文献   

4.
SYNOPSIS. Zoochlorellae of 7 ciliates from 3 different localities around Madison, Wisconsin, were identified from live and stained preparations. A relationship was worked out between volume of zoochlorellae and volume of their hosts. The zoochorellae which occupied the highest percentage of the space of the host cell were those in Holosticha viridis; the range in the 7 ciliates was 10–56%. There appeared to be some correlation between the locality of collection and density of the Chlorella population in the host.  相似文献   

5.
Mealybugs (Hemiptera, Coccoidea, Pseudococcidae) are plant sap-sucking insects that have within their body cavities specialized cells containing prokaryotic primary endosymbionts (P-endosymbionts). The P-endosymbionts have the unusual property of containing within their cytoplasm prokaryotic secondary endosymbionts (S-endosymbionts) [C. D. von Dohlen, S. Kohler, S. T. Alsop, and W. R. McManus, Nature (London) 412:433-436, 2001]. Four-kilobase fragments containing 16S-23S ribosomal DNA (rDNA) were obtained from the P-endosymbionts of 22 mealybug species and the S-endosymbionts of 12 representative species. Phylogenetic analyses of the P-endosymbionts indicated that they have a monophyletic origin and are members of the β-subdivision of the Proteobacteria; these organisms were subdivided into five different clusters. The S-endosymbionts were members of the γ-subdivision of the Proteobacteria and were grouped into clusters similar to those observed with the P-endosymbionts. The S-endosymbiont clusters were distinct from each other and from other insect-associated bacteria. The similarity of the clusters formed by the P- and S-endosymbionts suggests that the P-endosymbionts of mealybugs were infected multiple times with different precursors of the S-endosymbionts and once the association was established, the P- and S-endosymbionts were transmitted together. The lineage consisting of the P-endosymbionts of mealybugs was given the designation “Candidatus Tremblaya” gen. nov., with a single species, “Candidatus Tremblaya princeps” sp. nov. The results of phylogenetic analyses of mitochondrial DNA fragments encoding cytochrome oxidase subunits I and II from four representative mealybug species were in agreement with the results of 16S-23S rDNA analyses, suggesting that relationships among strains of “Candidatus T. princeps” are useful in inferring the phylogeny of their mealybug hosts.  相似文献   

6.
7.
8.
9.
Phycobiliproteins, together with linker polypeptides and various chromophores, are basic building blocks of phycobilisomes, a supramolecular complex with a light-harvesting function in cyanobacteria and red algae. Previous studies suggest that the different types of phycobiliproteins and the linker polypeptides originated from the same ancestor. Here we retrieve the phycobilisome-related genes from the well-annotated and even unfinished cyanobacteria genomes and find that many sites with elevated d N /d S ratios in different phycobiliprotein lineages are located in the chromophore-binding domain and the helical hairpin domains (X and Y). Covariation analyses also reveal that these sites are significantly correlated, showing strong evidence of the functional-structural importance of interactions among these residues. The potential selective pressure driving the diversification of phycobiliproteins may be related to the phycobiliprotein-chromophore microenvironment formation and the subunits interaction. Sites and genes identified here would provide targets for further research on the structural-functional role of these residues and energy transfer through the chromophores. [Reviewing Editor: Dr. Rasmus Nielsen]  相似文献   

10.
Aphids belonging to the three genera Tuberaphis, Glyphinaphis, and Cerataphis contain extracellular fungal symbionts that resemble endocellular yeast-like symbionts of planthoppers. Whereas the symbiont of planthoppers has a uricase (urate oxidase; EC 1.7.3.3) and recycles uric acid that the host stores, no uric acid was found in Tuberaphis styraci, and its fungal symbiont did not exhibit the uricase activity. However, the fungal symbionts of these aphids, including that of T. styraci, were shown to have putative uricase genes, or pseudogenes, for the uricase. Sequence analysis of these genes revealed that deleterious mutations occurred independently on each lineage of Glyphinaphis and Tuberaphis, while no such mutation was found in the lineage of Cerataphis. These genes were almost identical to those cloned from the symbionts of planthoppers, though the host aphids and planthoppers are phylogenetically distant. To estimate the phylogenetic relationship in detail between the fungal symbionts of aphids and those of planthoppers, a gene tree was constructed based on the sequences of the uricase genes including their flanking regions. As a result, the symbionts of planthoppers and Tuberaphis aphids formed a sister group against those of Glyphinaphis and Cerataphis aphids with high bootstrap confidence levels, which strongly suggests that symbionts have been horizontally transferred from the aphids' lineage to the planthoppers'. Received: 29 March 2000 / Accepted: 31 May 2000  相似文献   

11.
Wolbachia are maternally inherited endosymbiotic alpha-proteobacteria found in terrestrial arthropods and filarial nematodes. They are transmitted vertically through host cytoplasm and alter host biology by inducing various reproductive alterations, like feminization, parthenogenesis, male killing (MK) and cytoplasmic incompatibility. In butterflies, some effects especially MK and sperm-egg incompatibility are well established. All these effects skew the sex ratio towards female and subsequently favor the vertical transmission of Wolbachia. Some of the insects are also infected with multiple Wolbachia strains which may results in some complex phenomenon. In the present review the potential of Wolbachia for promoting evolutionary changes in its hosts with emphasis on recent advances in interactions of butterfly–Wolbachia is discussed. In addition to this, strain diversity of Wolbachia and its effects on various butterfly hosts are also highlighted.  相似文献   

12.
Uncovering how natural selection and genetic drift shape the evolutionary dynamics of virus populations within their hosts can pave the way to a better understanding of virus emergence. Mathematical models already play a leading role in these studies and are intended to predict future emergences. Here, using high-throughput sequencing, we analyzed the within-host population dynamics of four Potato virus Y (PVY) variants differing at most by two substitutions involved in pathogenicity properties. Model selection procedures were used to compare experimental results to six hypotheses regarding competitiveness and intensity of genetic drift experienced by viruses during host plant colonization. Results indicated that the frequencies of variants were well described using Lotka-Volterra models where the competition coefficients βij exerted by variant j on variant i are equal to their fitness ratio, rj/ri. Statistical inference allowed the estimation of the effect of each mutation on fitness, revealing slight (s = −0.45%) and high (s = −13.2%) fitness costs and a negative epistasis between them. Results also indicated that only 1 to 4 infectious units initiated the population of one apical leaf. The between-host variances of the variant frequencies were described using Dirichlet-multinomial distributions whose scale parameters, closely related to the fixation index FST, were shown to vary with time. The genetic differentiation of virus populations among plants increased from 0 to 10 days post-inoculation and then decreased until 35 days. Overall, this study showed that mathematical models can accurately describe both selection and genetic drift processes shaping the evolutionary dynamics of viruses within their hosts.  相似文献   

13.
为了获得较多的G roEL蛋白,深入研究其性质,对烟粉虱内共生菌groEL基因表达的条件进行了研究。结果表明:诱导groEL基因原核表达的最佳IPTG浓度为100μmol/L;在35℃诱导培养,能够获得较高的蛋白表达量;最佳诱导培养时间为4~5h;最佳诱导培养的初始pH值为8.0;在振荡转速为120 r/m in、诱导培养时间为4~5h时,增大接种量,有利于原核基因的表达;添加少量的NH4 有利于提高groEL基因原核表达的量,但Ca2 、Fe3 、K 、Mg2 则抑制groEL基因的原核表达,其中Fe3 抑制作用最为强烈;NH4 含量过高也不利于groEL基因原核表达;在培养基中添加少量的葡萄糖,能够提高groEL基因原核表达,但葡萄糖含量较高时不利于groEL基因原核表达。  相似文献   

14.
Mealybugs (Hemiptera, Coccoidea, Pseudococcidae), like aphids and psyllids, are plant sap-sucking insects that have an obligate association with prokaryotic endosymbionts that are acquired through vertical, maternal transmission. We sequenced two fragments of the genome of Tremblaya princeps, the endosymbiont of mealybugs, which is a member of the β subdivision of the Proteobacteria. Each of the fragments (35 and 30 kb) contains a copy of 16S-23S-5S rRNA genes. A total of 37 open reading frames were detected, which corresponded to putative rRNA proteins, chaperones, and enzymes of branched-chain amino acid biosynthesis, DNA replication, protein translation, and RNA synthesis. The genome of T. princeps has a number of properties that distinguish it from the genomes of Buchnera aphidicola and Carsonella ruddii, the endosymbionts of aphids and psyllids, respectively. Among these properties are a high G+C content (57.1 mol%), the same G+C content in intergenic spaces and structural genes, and similar G+C contents of the genes encoding highly and poorly conserved proteins. The high G+C content has a substantial effect on protein composition; about one-third of the residues consist of four amino acids with high-G+C-content codons. Sequence analysis of DNA fragments containing the rRNA operon and adjacent regions from endosymbionts of several mealybug species suggested that there was a single duplication of the rRNA operon and the adjacent genes in an ancestor of the present T. princeps. Subsequently, in one mealybug lineage rpS15, one of the duplicated genes, was retained, while in another lineage it decayed. These results extend the diversity of the types of endosymbiotic associations found in plant sap-sucking insects.  相似文献   

15.
EcoHealth - Rodents represent 42% of the world’s mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity...  相似文献   

16.
Moldovan  M. A. 《Molecular Biology》2019,53(2):192-197
Molecular Biology - Bacterial chromosomes are widely thought of as circular DNA molecules. However, linear bacterial chromosomes, as well as linear mitochondrial and plastid chromosomes, are fairly...  相似文献   

17.
18.
19.
Plasmids are extrachromosomal genetic elements in prokaryotes that have been recognized as important drivers of microbial ecology and evolution. Plasmids are found in multiple copies inside their host cell where independent emergence of mutations may lead to intracellular genetic heterogeneity. The intracellular plasmid diversity is thus subject to changes upon cell division. However, the effect of plasmid segregation on plasmid evolution remains understudied. Here, we show that genetic drift during cell division—segregational drift—leads to the rapid extinction of novel plasmid alleles. We established a novel experimental approach to control plasmid allele frequency at the levels of a single cell and the whole population. Following the dynamics of plasmid alleles in an evolution experiment, we find that the mode of plasmid inheritance—random or clustered—is an important determinant of plasmid allele dynamics. Phylogenetic reconstruction of our model plasmid in clinical isolates furthermore reveals a slow evolutionary rate of plasmid-encoded genes in comparison to chromosomal genes. Our study provides empirical evidence that genetic drift in plasmid evolution occurs at multiple levels: the host cell and the population of hosts. Segregational drift has implications for the evolutionary rate heterogeneity of extrachromosomal genetic elements.  相似文献   

20.
Some literature is available on cospeciation and on reconstructing the phylogenetic relationships of retroelements, but relatively little consideration has been given to whether there is cospeciation between retroelements and their hosts. Here we address this problem in detail. We conclude that there is no significant evidence for cospeciation between retroelements and their hosts. This conclusion was reached by noting that the branching order of the two phylogenies was no more similar than would be expected by chance. Received: 18 February 1999 / Accepted: 1 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号