首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mammalian U6 small nuclear RNA (snRNA) is heterogeneous with respect to the number of 3' terminal U residues. The major form terminates with five U residues and a 2',3' cyclic phosphate. Because of the presence in HeLa cell nuclear extracts of a terminal uridylyl transferase, a minor form of U6 snRNA is elongated, producing multiple species containing up to 12 U residues. In this study we have used glycerol gradients to demonstrate that these U6 snRNA forms are assembled into U6 ribonucleoprotein (RNP), U4/U6 snRNPs, and U4/U5/U6 tri-snRNP complexes. Furthermore, glycerol gradients combined with affinity selection of biotinylated pre-mRNAs led us to show that elongated forms of U6 snRNAs enter the spliceosome and that some of these become shortened with time to a single species having the same characteristics as the major form of U6 snRNA present in mammalian nuclear extracts. We propose that this elongation-shortening process is related to the function of U6 snRNA in mammalian pre-mRNA splicing.  相似文献   

4.
5.
Sequences required for 3' end formation of human U2 small nuclear RNA   总被引:38,自引:0,他引:38  
C Y Yuo  M Ares  A M Weiner 《Cell》1985,42(1):193-202
Xenopus oocytes injected with human U2 snRNA genes synthesize mature U2 as well as a U2 precursor with about 10 extra 3' nucleotides (human pre-U2 RNA). Formation of the pre-U2 3' end requires a downstream element located between position +16 and +37 in the U2 3'-flanking sequence. The distance between this element and the U2 coding region can be increased without affecting formation of the pre-U2 3' end. When the natural sequence surrounding the pre-U2 3' end is changed, novel 3' ends are still generated within a narrow range upstream from the element. The 3' terminal stem-loop of U2 snRNA is not required for pre-U2 3' end formation. A sequence within the 3' element (GTTTN0-3AAAPuNNAGA) is conserved among snRNA genes transcribed by RNA polymerase II. Our results suggest that the 3' ends of pre-U2 RNA and histone mRNA may be generated by related but distinct RNA processing mechanisms.  相似文献   

6.
Genes for human U4 small nuclear RNA   总被引:10,自引:0,他引:10  
  相似文献   

7.
8.
9.
Four U4 RNA pseudogenes were isolated and characterized from a rat genomic bank. The four pseudogenes contained sequences completely homologous to U4 RNA from nucleotides 1 to 67 and had common truncated 3'-ends. Three of the four pseudogenes were flanked by 14 to 18 nucleotide-long direct repeats. The structural features of these four U4 RNA pseudogenes are consistent with the hypothesis that these pseudogenes arose by RNA self-primed complementary DNA synthesis and integration into the genome (Van Arsdell et al., Cell 26:11-17, 1981).  相似文献   

10.
11.
12.
Structures of four human pseudogenes for U7 small nuclear RNA   总被引:2,自引:0,他引:2  
D Soldati  D Schümperli 《Gene》1990,95(2):305-306
Four U7 RNA-related sequences were isolated from a human genomic DNA library. None of the sequences completely match the published human U7 RNA sequence and all of them contain features typical of reverse-transcribed pseudogenes.  相似文献   

13.
Oligonucleotides derived from the spacer element of the histone RNA 3' processing signal were used to characterize mouse U7 small nuclear RNA (snRNA), i.e., the snRNA component active in 3' processing of histone pre-mRNA. Under RNase H conditions, such oligonucleotides inhibited the processing reaction, indicating the formation of a DNA-RNA hybrid with a functional ribonucleoprotein component. Moreover, these oligonucleotides hybridized to a single nuclear RNA species of approximately 65 nucleotides. The sequence of this RNA was determined by primer extension experiments and was found to bear several structural similarities with sea urchin U7 snRNA. The comparison of mouse and sea urchin U7 snRNA structures yields some further insight into the mechanism of histone RNA 3' processing.  相似文献   

14.
Mutations in stem-loop IIa of yeast U2 RNA cause cold-sensitive growth and cold-sensitive U2 small nuclear ribonucleoprotein function in vitro. Cold-sensitive U2 small nuclear RNA adopts an alternative conformation that occludes the loop and disrupts the stem but does so at both restrictive and permissive temperatures. To determine whether alternative U2 RNA structure causes the defects, we tested second-site mutations in U2 predicted to disrupt the alternative conformation. We find that such mutations efficiently suppress the cold-sensitive phenotypes and partially restore correct U2 RNA folding. A genetic search for additional suppressors of cold sensitivity revealed two unexpected mutations in the base of an adjacent stem-loop. Direct probing of RNA structure in vivo indicates that the suppressors of cold sensitivity act to improve the stability of the essential stem relative to competing alternative structures by disrupting the alternative structures. We suggest that many of the numerous cold-sensitive mutations in a variety of RNAs and RNA-binding proteins could be a result of changes in the stability of a functional RNA conformation relative to a competing structure. The presence of an evolutionarily conserved U2 sequence positioned to form an alternative structure argues that this region of U2 is dynamic during the assembly or function of the U2 small nuclear ribonucleoprotein.  相似文献   

15.
U14 is one of several nucleolar small nuclear RNAs required for normal processing of rRNA. Functional mapping of U14 from Saccharomyces cerevisiae has yielded a number of mutants defective in U14 accumulation or function. In this study, we have further defined three structural elements required for U14 accumulation. The essential elements include the U14-conserved box C and box D sequences and a 5', 3' terminal stem. The box elements are coconserved among several nucleolar small nuclear RNAs and have been implicated in binding of the protein fibrillarin. New mutational results show that the first GA bases of the box C sequence UGAUGA are essential, and two vital bases in box D have also been identified. An intragenic suppressor of a lethal box C mutant has been isolated and shown to contain a new box C-like PyGAUG sequence two bases upstream of normal box C. The importance of the terminal stem was confirmed from new compensatory base changes and the finding that accumulation defects in the box elements can be complemented by extending the terminal stem. The results suggest that the observed defects in accumulation reflect U14 instability and that protein binding to one or more of these elements is required for metabolic stability.  相似文献   

16.
We have identified and characterized three new variants of U5 small nuclear RNA (snRNA) from HeLa cells, called U5D, U5E, and U5F. Each variant has a 2,2,7-trimethylguanosine cap and is packaged into an Sm-precipitable small nuclear ribonucleoprotein (snRNP) particle. All retain the evolutionarily invariant 9-base loop at the top of stem 1; however, numerous base changes relative to the abundant forms of U5 snRNA are present in other regions of the RNAs, including a loop that is part of the yeast U5 minimal domain required for viability and has been shown to bind a protein in HeLa extracts. U5E and U5F each constitute 7% of the total U5 population in HeLa cells and are slightly longer than the previously characterized human U5 (A, B, and C) species. U5D, which composes 5% of HeLa cell U5 snRNAs, is present in two forms: a full-length species, U5DL, and a shorter species, U5DS, which is truncated by 15 nucleotides at its 3' end and therefore resembles the short form of U5 (snR7S) in Saccharomyces cerevisiae. We have established conditions that allow specific detection of the individual U5 variants by either Northern blotting (RNA blotting) or primer extension; likewise, U5E and U5F can be specifically and completely degraded in splicing extracts by oligonucleotide-directed RNase H cleavage. All variant U5 snRNAs are assembled into functional particles, as indicated by their immunoprecipitability with anti-(U5) RNP antibodies, their incorporation into the U4/U5/U6 tri-snRNP complex, and their presence in affinity-purified spliceosomes. The higher abundance of these U5 variants in 293 cells compared with that in HeLa cells suggests possible roles in alternative splicing.  相似文献   

17.
Using in situ hybridization, we found that the U2 small nuclear RNA gene cluster mapped very close to and was frequently disrupted by the gaps and breaks induced specifically in the human 17q21-q22 region by highly oncogenic adenovirus type 12 (Ad12). Restriction mapping revealed no structural alterations in the U2 gene locus as a result of Ad12 infection. Likewise, no Ad12-induced alterations in U2 RNA levels were detected. We estimate that the maximum size of the region specifically disrupted by this virus was less than 350 to 700 kilobases. A comparison of these data with similar data regarding biochemically induced fragile sites was made.  相似文献   

18.
Autoantibodies to ribonucleoprotein particles containing U2 small nuclear RNA.   总被引:29,自引:3,他引:26  
Autoantibodies exclusively precipitating U1 and U2 small nuclear ribonucleoprotein (snRNP) particles [anti-(U1,U2)RNP] were detected in sera from four patients with autoimmune disorders. When tested by immunoblotting, these sera recognized up to four different protein antigens in purified mixtures of U1-U6 RNP particles. With purified antibody fractions eluted from individual antigen bands on nitrocellulose blots, each anti-(U1,U2)RNP serum precipitated U2 RNP by virtue of the recognition of a U2 RNP-specific B" antigen (mol. wt. 28 500). Antibodies to the U2 RNP-specific A' protein (mol. wt. 31 000) were found in only one serum. The B" antigen differs slightly in mol. wt. from the U1-U6 RNA-associated B/B' antigens and can be separated from this doublet by two-dimensional gel electrophoresis, due to its more acidic pI. In immunoprecipitation assays, the purified anti-B" antibody specificity also reacts with U1 RNPs which is due to cross-reactivity of the antibody with the U1 RNA-specific A protein, as demonstrated by immunoblotting using proteins from isolated U1 RNPs as antigenic material. Thus the A antigen not only bears unique antigenic sites for anti-A antibodies contained in anti-(U1)RNP sera, it also shares epitopes with the U2 RNP-specific B" antigen.  相似文献   

19.
20.
Genes and pseudogenes for rat U3A and U3B small nuclear RNA   总被引:11,自引:0,他引:11  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号