首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among a mixture of amphotropic and ecotropic murine leukemia viruses (MuLVs) isolated from paralyzed wild mice, only N-tropic ecotropic MuLV, cloned by cell culture techniques, has been shown to induce paralysis after reinjection into susceptible mice (M. B. Gardner, Curr. Top. Microbiol. Immunol. 79:215-239, 1978). The viral DNA genome of one of these neurotropic MuLVs (Cas-Br-E) has been cloned in Charon 21A at the SalI site. One clone, designated NE-8, was studied in more detail. A restriction endonuclease map of this cloned DNA was derived. Cloned viral DNA microinjected into NIH 3T3 cells produced infectious MuLV which was characterized as XC+, ecotropic, and N-tropic. The virus that was recovered after the microinjection of NE-8 DNA was also injected into susceptible SIM.S and NIH Swiss mice and was found to induce lower limb paralysis in these animals. These results make it highly unlikely that other agents (which might have escaped detection and separation from ecotropic MuLV by the techniques previously used) play a role in the etiology of this disease and clearly indicate that the ecotropic MuLV genome harbors sequences responsible for this paralysis. The availability of this clone DNA would now allow us to map these sequences on the genome.  相似文献   

2.
SL3-3 is a leukemogenic, ecotropic retrovirus produced by a T-cell line derived from a spontaneous lymphoma of an AKR mouse. We have isolated a molecular clone of its DNA provirus from infected NIH 3T3 fibroblasts. Cloned proviral DNA produced infectious virus upon transfection onto NIH 3T3 cells. Virus derived by transfection induced lymphomas at high frequency in AKR/J, C3H(f)/Bi, CBA/J, and NFS/N mice. Heteroduplex and RNase T1 fingerprinting analyses showed that the genomes of SL3-3 and the non-leukemogenic virus, Akv, contain no major substitutions relative to one another and differ by only a few base changes. These results unambiguously show that SL3-3 is a highly leukemogenic virus and that major rearrangements of the genome relative to Akv are not required for virulence.  相似文献   

3.
We studied the RNA genomes of several wild mouse type C retroviruses by using RNase T1-oligonucleotide fingerprinting. The amphotropic and ecotropic viruses of field strain 1504 produced very similar oligonucleotide fingerprints, but each also had several unique oligonucleotides. All of these unique oligonucleotides were located in the env gene region and were probably responsible for the host range differences between these viruses, as well as the lymphomagenic and paralytogenic properties of the viruses. We obtained similar results with the amphotropic and ecotropic viruses of another field strain (4070), which was isolated from a mouse from a different trapping area. The amphotropic viruses of several field strains (strains 1504, 4070, and 1313) were more closely related than the ecotropic viruses of different strains (strains 1504, 4070, and 4996). These findings suggested that the genetic sequences of the amphotropic viruses are more conserved than those of ecotropic viruses isolated from the same wild mice.  相似文献   

4.
We used AKR/J mice to produce monoclonal antibodies specific for a neurotropic ecotropic (WM-E) virus initially isolated from wild mice. The rationale for this approach involved the observation that these mice were immunologically hyporesponsive to endogenous ecotropic virus (Akv) but fully responsive to type-specific determinants of WM-E. Hybridoma cell lines derived from mice immunized with both denatured and viable virus produced antibodies with specificity for three viral membrane-associated polypeptides, gp70, p15(E), and p15gag. Epitopes specific for WM-E virus were detected in each of these polypeptides. Cross-reactivity with Friend ecotropic virus (Friend murine leukemia virus) was observed with some gp70- and p15gag-specific antibodies, but no reactivity with endogenous Akv ecotropic virus was seen. The majority of these antibodies did not react with either xenotropic or mink cell focus-forming viruses. Two WM-E-specific anti-gp70 antibodies reacting with different determinants had virus-neutralizing activity in the absence of complement, suggesting that the respective epitopes may participate in receptor binding or virus penetration events. We used these monoclonal antibodies in initial studies to examine the replication of WM-E virus in neonatally inoculated AKR/J mice which are fully resistant to the paralytic disease induced by this virus. Since these mice express high levels of endogenous ecotropic virus, standard assays for ecotropic virus cannot be used to study this question. We present evidence that the resistance to disease does not involve a resistance to virus replication, since these mice expressed levels of viremia and virus replication in spleen and lumbar spinal cord comparable to susceptible NFS/N mice at a time when the latter began to manifest clinical signs of lower-motor-neuron pathology.  相似文献   

5.
6.
The wild mouse ecotropic retrovirus (WM-E) induces a spongiform neurodegenerative disease in mice after a variable incubation period of 2 months to as long as 1 year. We isolated a molecular clone of WM-E (15-1) which was weakly neurovirulent (incidence, 8%) but was highly leukemogenic (incidence, 45%). Both lymphoid and granulocytic leukemias were observed, and these leukemias were often neuroinvasive. A chimeric virus was constructed containing the env and 3' pol sequences of 15-1 and long terminal repeat (LTR), gag, and 5' pol sequences from a clone of Friend murine leukemia virus (FB29). FB29 has been shown previously to replicate to high levels in the central nervous system (CNS) but is not itself neurovirulent. This finding was confirmed at the DNA level in the current study. Surprisingly, intraperitoneal inoculation of neonatal IRW mice with the chimeric virus (FrCasE) caused an accelerated neurodegenerative disease with an incubation period of only 16 days and was uniformly fatal by 23 days postinoculation. Introduction of the LTR of 15-1 into the FrCasE genome yielded a virus (FrCasEL) with a degree of neurovirulence intermediate between those of 15-1 and FrCasE. No differences were found in the levels of viremia or the relative levels of viral DNA in the spleens of mice inoculated with 15-1, FrCasE, or FrCasEL. However, the levels of viral DNA in the CNS correlated with the relative degrees of neurovirulence of the respective viruses (FrCasE greater than FrCasEL greater than 15-1). Thus, the env and 3' pol sequences of WM-E (15-1) were required for neurovirulence, but elements within the LTR and gag-pol regions of FB29 had a profound influence on the level of CNS infection and the rate of development of neurodegeneration.  相似文献   

7.
Two residues, tyrosine 235 and glutamic acid 237, of the ecotropic murine leukemia virus receptor (ATRC1) have been shown to be essential for receptor-mediated virus envelope binding and entry. We performed genetic analyses to examine the biochemical contribution of these residues in a productive virus-receptor interaction. Altered ATRC1 receptors bearing either a phenylalanine, a tryptophan, a histidine, or a methionine at position 235 mediated ecotropic virus entry comparable to that mediated by ATRC1. In contrast, altered ATRC1 receptors bearing alanine, threonine, serine, or proline at position 235 exhibited a 300- to 10,000-fold decrease in receptor capability. Furthermore, substitution of tyrosine or phenylalanine into the corresponding position (242) of the homologous human protein that lacks ecotropic virus receptor capability resulted in acquisition of ecotropic virus receptor function comparable to that of ATRC1. Substitution of a tryptophan or a histidine at that position of the human protein, however, resulted in a much-reduced receptor capability, suggesting a preference for a benzene ring in the hydrophobic side chain. A similar analysis of proteins substituted at position 237 revealed that aspartic acid, but not arginine or lysine, can functionally substitute for glutamic acid 237 in ATRC1 or at the corresponding position in the human protein. These results suggest a requirement for an acidic and a nearby hydrophobic amino acid for efficient ecotropic virus entry. Similar motifs have been identified in the virus binding sites of other retrovirus receptors, suggesting that the initial step of retrovirus entry may be governed by a common mechanism.  相似文献   

8.
Wild mouse DNAs were analyzed for two types of endogenous ecotropic murine leukemia viruses (MuLVs), Akv and Fv-4r-associated MuLV. Endogenous Akv viruses were found only in northern Chinese mice, Korean mice, and Japanese (Mus musculus molossinus) mice. The Fv-4r gene, which is a truncated endogenous MuLV with ecotropic interference properties, was carried by Southeast Asian (M. m. castaneus) mice, Korean mice, and M. m. molossinus. Sequences related to Fv-4r MuLV env were found only in M. m. castaneus. These findings suggest that endogenous Akv viruses were acquired by northern Chinese mice and that the Fv-4r gene or its related endogenous MuLVs were acquired independently by M. m. castaneus. The Fv-4r gene appears to have been generated hundreds of thousands of years ago, before the amplification of the Fv-4r-related endogenous MuLVs in M. m. castaneus. The coexistence of Akv viruses and the Fv-4r gene in M. m. molossinus may be explained by the hybrid origin of M. m. molossinus in crosses between northern Chinese mice and M. m. castaneus, as described in other articles. The absence of the Fv-4r-related endogenous MuLVs in M. m. molossinus may indicate that the ancestral mice of this subspecies either were an ancient type of M. m. castaneus that had acquired the Fv-4r gene but had not yet acquired the Fv-4r-related endogenous MuLVs or were a rare fraction of a mixed population of M. m. castaneus and northern Chinese mice.  相似文献   

9.
The murine cationic amino acid transporter is also the receptor for murine ecotropic leukemia retrovirus (MuLV-E). Recently, we have cloned a human gene (H13) homologous to the murine ecotropic retroviral receptor (ERR). Although the human homolog is very similar to murine ERR in sequence (87.6% amino acid identity) and structure (14 transmembrane-spanning domains), the human protein fails to function as a receptor for MuLV-E. To identify amino acid residues critical for MuLV-E infection, we took advantage of this species difference and substituted human H13 and murine ERR amino acid residues. Mouse-human chimeric receptor molecules were generated by taking advantage of using common restriction sites. These studies demonstrated that extracellular domains 3 and/or 4 contain the critical amino acid residues. Oligonucleotide-directed mutagenesis was then used to create 13 individual ERR mutants containing one or two amino acids substitutions or insertions within these two extracellular domains. Substitution of as few as one amino acid residue (Tyr) at position 235 in ERR with the corresponding H13 amino acid residue Pro abrogates the ability to function as a receptor for MuLV-E infection. Conversely, substitution of just two amino acid residues at positions 240 and 242 or 242 and 244 in H13 with the corresponding amino acid residues in ERR endows H13 with the ability to function as the receptor. This observation can be utilized to significantly improve the safety of retrovirus-mediated gene therapy in humans.  相似文献   

10.
The cellular receptors that mediate binding and internalization of retroviruses have recently been identified. The concentration and accessibility of these receptors are critical determinants in accomplishing successful gene transfer with retrovirus-based vectors. Murine retroviruses containing ecotropic glycoproteins do not infect human cells since human cells do not express the receptor that binds the ecotropic glycoproteins. To enable human cells to become permissive for ecotropic retrovirus-mediated gene transfer, we have developed a recombinant adeno-associated virus type 2 (AAV) vector containing ecotropic retroviral receptor (ecoR) cDNA under the control of the Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter (vRSVp-ecoR). Established human cell lines, such as HeLa and KB, known to be nonpermissive for murine ecotropic retroviruses, became permissive for infection by a retroviral vector containing a bacterial gene for resistance to neomycin (RV-Neo(r)), with a transduction efficiency of up to 47%, following transduction with vRSVp-ecoR, as determined by the development of colonies that were resistant to the drug G418, a neomycin analog. No G418-resistant colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. Southern and Northern blot analyses revealed stable integration and long-term expression, respectively, of the transduced murine ecoR gene in clonal isolates of HeLa and KB cells. Similarly, ecotropic retrovirus-mediated Neo(r) transduction of primary human CD34+ hematopoietic progenitor cells from normal bone marrow was also documented, but only following infection with vRSVp-ecoR. The retroviral transduction efficiency was approximately 7% without prestimulation and approximately 14% with prestimulation of CD34+ cells with cytokines, as determined by hematopoietic clonogenic assays. No G418-resistant progenitor cell colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. These results suggest that sequential transduction of primary human cells with two different viral vectors may overcome limitations encountered with a single vector. Thus, the combined use of AAV- and retrovirus-based vectors may have important clinical implications for ex vivo and in vivo human gene therapy.  相似文献   

11.
The infectibility of the regenerating rat liver by ecotropic retroviruses was studied relative to the expression of the gene coding for the ecotropic retrovirus receptor (Ecor) that functions as a cationic amino acid transporter. It is known that the gene for the receptor is expressed in primary hepatocytes and hepatoma cells but is absent in adult liver cells. Isolation of a 2.85-kb cDNA for the rat Ecor suggested that the rat viral receptor is 97% homologous to the mouse viral receptor and that it contains the envelope-binding domain that determines the host range of ecotropic murine retroviruses. This explains the efficient infection of rat cells by ecotropic retroviruses. Since cell division is required for liver cells to be infected, we determined the susceptibility of the regenerating rat liver to infection at different time points after partial hepatectomy (0 to 24 h) in relation to the presence of receptor mRNA. Infection of the liver occurred only when the liver was exposed to virus 4 h after partial hepatectomy. This time course of infection paralleled expression of the gene for the Ecor, which was rapidly induced between 2 and 6 h during liver regeneration. However, expression of the dormant receptor gene in quiescent liver cells can be induced by insulin, dexamethasone, and arginine, indicating that cell division is not required for expression of the receptor gene in liver cells. A diet high in carbohydrate (low in protein) significantly increased the concentration of receptor mRNA in liver cells, indicating that hormones play a role in the regulation of expression of this gene in vivo. We conclude that the gene for the viral receptor is expressed in the regenerating and quiescent liver when the urea cycle enzymes are down regulated. The infection of the regenerating rat liver by ecotropic retroviruses at the time point of expression of the receptor gene supports the requirement of expression of this transporter for infection.  相似文献   

12.
A mouse cDNA that confers susceptibility to ecotropic murine leukemia viruses following transfection into human EJ cells has been cloned and sequenced. We show that this sequence is likely to be Rec-1, the chromosome 5 locus originally defined by studies with somatic cell hybrids as responsible for virus susceptibility, and provide a specific chromosomal map position for this locus by analysis of an interspecies backcross. This locus maps in the distal region of chromosome 5 and is thus not within the cluster of retrovirus-related genes near the centromere.  相似文献   

13.
The human genome contains multiple copies of sequences related to the HERV-K family of endogenous retroviruses, homologous to the B-type mouse mammary tumour virus. A DNA fragment closely resembling an HERV-K long tandem repeat (LTR) was detected in a library of hncDNA clones enriched for sequences from human chromosome 19. Sites showing homology to the sequence of this fragment have been identified on human chromosome 19 by hybridization to previously mapped chromosome 19 cosmids. Thus the distribution of LTR sequences on a specific human chromosome has been mapped for the first time. We estimate the total number of such sites on human chromosome 19 to be at least 110. Many of these sites are located in the vicinity of known genes. The precise localizations (to specific cosmids) of LTR-homologous sequences on chromosome 19 can serve as a reference source and will automatically provide further insight into LTR-gene relationships as new genes are mapped onto the chromosome.  相似文献   

14.
A major difference between lentiviruses such as human immunodeficiency virus (HIV) and most other retroviruses is their ability to productively infect nondividing cells. We present here genetic evidence for involvement of the capsid protein (CA) in the infectious phenotype in nondividing cells. A chimeric HIV type 1 (HIV-1) in which the MA and CA of HIV-1 are replaced with the MA, p12, and CA encoding sequences from murine leukemia virus (MLV) loses the ability to efficiently infect nondividing cells. Analysis of the accumulation of two-long-terminal-repeat circles implies that the impairment of nuclear transport of preintegration complexes is responsible for the restricted infection of this chimeric virus in nondividing cells. Incorporation of MLV MA and MLV p12 into HIV virions alone does not exert any adverse effects on viral infection in interphase cells. These results suggest that CA is the dominant determinant for the difference between HIV and MLV in the ability to transduce nondividing cells.  相似文献   

15.
Restriction enzyme and Southern gel analyses were used to determine the number and location of endogenous ecotropic retroviruses in the germ line of several mouse strains congenic at the Fv-2 gene locus. A new endogenous ecotropic provirus was observed in the germ line of B6.S (Fv-2ss) mice, in addition to the resident provirus found in its congenic partner C57BL/6 (Fv-2rr). This new provirus was similar in structure to the C57BL provirus. The SIM strain of mice, the donors of the Fv-2s allele in B6.S mice, does not contain ecotropic proviruses, suggesting that the new provirus in the B6.S mouse strain arose by germ-line reintegration during the construction of this strain. Mendelian segregation analysis indicated that this new provirus was linked to the Fv-2 gene locus on chromosome 9. In three other Fv-2s congenic mouse strains--B10.C (47N), B6.C (H-7b), and C57BL/6J Trfa, Bgsd--no additional ecotropic endogenous viruses were detected, suggesting that the reinsertion event that occurred during the construction of B6.S is not essential for the acquisition of the Fv-2s phenotype in the C57BL genetic background. Although numerous reports of germ-line reinsertions of ecotropic virus in high-virus mouse strains have been received, the present results provide definitive evidence that similar germ-line amplifications of endogenous ecotropic virus can occur in a low-virus mouse strain.  相似文献   

16.
17.
We analyzed wild mouse DNAs for the number and type of proviral genes related to the env sequences of various murine leukemia viruses (MuLVs). Only Mus species closely related to laboratory mice carried these retroviral sequences, and the different subclasses of viral env genes tended to be restricted to specific taxonomic groups. Only Mus musculus molossinus carried proviral genes which cross-reacted with the inbred mouse ecotropic MuLV env gene. The ecotropic viral env sequence associated with the Fv-4 resistance gene was found in the Asian mice M. musculus molossinus and Mus musculus castaneus and in California mice from Lake Casitas (LC). Both M. musculus castaneus and LC mice carried many additional Fv-4 env-related proviruses, two of which are common to both mouse populations, which suggests that these mice share a recent common ancestry. Xenotropic and mink cell focus-forming (MCF) virus env sequences were more widely dispersed in wild mice than the ecotropic viral env genes, which suggests that nonecotropic MuLVs were integrated into the Mus germ line at an earlier date. Xenotropic MuLVs represented the major component of MuLV env-reactive genes in Asian and eastern European mice classified as M. musculus molossinus, M. musculus castaneus, and Mus musculus musculus, whereas Mus musculus domesticus from western Europe, the Mediterranean, and North America contained almost exclusively MCF virus env copies. M. musculus musculus mice from central Europe trapped near the M. musculus domesticus/M. musculus musculus hybrid zone carried multiple copies of both types of env genes. LC mice also carried both xenotropic and MCF viral env genes, which is consistent with the above conclusion that they represent natural hybrids of M. musculus domesticus and M. musculus castaneus.  相似文献   

18.
The Cas-Br-E and ts-Mo BA-1 murine leukemia viruses (MuLV) induce a spongiform neurodegenerative disease with different clinical manifestations, namely, either hind limb paralysis (Cas-Br-E) or tremors, spasticity, and hind limb weakness (ts-Mo Ba-1). We constructed the chimeric NEBA-1 MuLV by replacing the long terminal repeat of Cas-Br-E MuLV with that of ts-Mo BA-1 MuLV. In SWR/J or CFW/D mice, NEBA-1 MuLV induced an ataxic neurological disease characterized by clinical signs different from those induced by both parents. Although NEBA-1 MuLV did not induce lesions in novel brain areas, the spongiform lesions were more severe in deep cerebellar nuclei and in the spinal cord than those found in paralyzed mice inoculated with Cas-Br-E MuLV. By in situ hybridization, we found that the distribution of the spongiform lesions closely correlated with the distribution of the infected central nervous system cells. In the spinal cord, a close correlation was found between the number of infected cells and the severity of the spongiform degeneration. Sequencing of the substituted ts-BA-1 MuLV fragment and comparison with homologous sequences of Cas-Br-E and Moloney MuLV showed differences mainly in the U3 tandem direct repeats. Our results show that a few modifications within the U3 long terminal repeat allow the virus to cause more severe lesions in some central nervous system regions and that the severity of the spongiform degeneration correlates with the level of viral replication.  相似文献   

19.
H Yu  N Soong    W F Anderson 《Journal of virology》1995,69(10):6557-6562
A quantitative analysis of the binding kinetics of intact Moloney murine leukemia retrovirus (MoMuLV) particles with NIH 3T3 cells was performed with an immunofluorescence flow cytometry assay. The virus-cell binding equilibrium dissociation constant (KD), expressed in terms of virus particle concentration, was measured to be 8.5 (+/- 6.4) x 10(-12) M at 4 degrees C and was three- to sixfold lower at temperatures above 15 degrees C. The KD of virus binding is about 1,000-fold lower than the KD of purified MoMuLV envelope. The association rate constant was determined to be 2.5 (+/- 0.9) x 10(9) M-1 min-1 at 4 degrees C and was 5- to 10-fold higher at temperatures above 15 degrees C. The apparent dissociation rate constant at 4 degrees C was 1.1 (+/- 0.4) x 10(-3) min-1 and was doubled for every 10 degrees C increase in temperature over the range tested (15 to 37 degrees C).  相似文献   

20.
A variety of ecotropic murine leukemia viruses cause neurodegenerative disease. We describe here the clinical and histopathological features of a neurologic disease induced by a polytropic murine leukemia virus, FMCF98. Clinical disease was dominated by hyperexcitability and ataxia, and the histopathology was characterized primarily by astrocytosis and astrocytic degeneration. The viral envelope gene harbored the determinants of neurovirulence, since the chimeric virus Fr98E, which contained the envelope gene of FMCF98 on a background of the nonneurovirulent virus FB29, caused a similar disease. The disease caused by Fr98E differed from that induced by the coisogenic neurovirulent ecotropic virus FrCasE in clinical presentation, histopathology, and distribution of virus in the central nervous system. Since Fr98E contains a polytropic envelope gene and FrCasE contains an ecotropic envelope gene, these phenotypic differences appeared to be determined by envelope sequences and may reflect differences in virus receptor usage in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号