首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-arrestins play critical roles in chemotaxis and cytoskeletal reorganization downstream of several receptor types, including G protein-coupled receptors (GPCRs), which are targets for greater than 50% of all pharmaceuticals. Among them, receptors for lysophosphatidic acid (LPA), namely LPA1 are overexpressed in breast cancer and promote metastatic spread. We have recently reported that β-arrestin2 regulates LPA1-mediated breast cancer cell migration and invasion, although the underlying molecular mechanisms are not clearly understood. We show here that LPA induces activity of the small G protein, Rap1 in breast cancer cells in a β-arrestin2-dependent manner, but fails to activate Rap1 in non-malignant mammary epithelial cells. We found that Rap1A mRNA levels are higher in human breast tumors compared to healthy patient samples and Rap1A is robustly expressed in human ductal carcinoma in situ and invasive tumors, in contrast to the normal mammary ducts. Rap1A protein expression is also higher in aggressive breast cancer cells (MDA-MB-231 and Hs578t) relative to the weakly invasive MCF-7 cells or non-malignant MCF10A mammary cells. Depletion of Rap1A expression significantly impaired LPA-stimulated migration of breast cancer cells and invasiveness in three-dimensional Matrigel cultures. Furthermore, we found that β-arrestin2 associates with the actin binding protein IQGAP1 in breast cancer cells, and is necessary for the recruitment of IQGAP1 to the leading edge of migratory cells. Depletion of IQGAP1 blocked LPA-stimulated breast cancer cell invasion. Finally, we have identified that LPA enhances the binding of endogenous Rap1A to β-arrestin2, and also stimulates Rap1A and IQGAP1 to associate with LPA1. Thus our data establish novel roles for Rap1A and IQGAP1 as critical regulators of LPA-induced breast cancer cell migration and invasion.  相似文献   

2.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

3.
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.  相似文献   

4.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   

5.
The cell-cell adhesion molecule E-cadherin is stabilized by linking intracellularly with the actin cytoskeleton through PP2A-mediated recruitment of IQGAP1 to Rac1-bound E-cadherin-catenins complex in nonmalignant HME cells. However, little is known about the dysfunction of E-cadherin by loss or reduced expression of PP2A in human breast cancer cells. We report here that both human breast cancer MDA-MB-231 and MCF-7 cells were deficient in expression of the PP2A-A protein and lost the IQGAP1 recruitment to Rac1-bound catenins. In MDA-MB-231 cells, E-cadherin was also deficient. Immunohistochemical analysis of the normal-carcinoma matched human breast tissue arrays revealed that PP2A-A was expressed in 96% of normal tissue specimens but not in 57% of carcinoma specimens. Expression of E-cadherin in MCF-7 cells was 1.5-fold higher than that in HME cells, however, 80% of E-cadherin was endocytosed and incompletely anchored to F-actin. Therefore, we propose that the dysfunction of E-cadherin due to its endocytosis may occur in some proportion of human breast carcinomas in which the PP2A-A protein is lost or significantly reduced.  相似文献   

6.
There is increased staining of endothelins (ET-1, -2, and -3) and receptors (ET-RA and -RB) in invasive breast tumors compared to nonneoplastic tissue, and ETs stimulate MCF-7 cell invasion in vitro. We analyzed ETstimulation of benign and transformed mammary epithelial cells, and whether expression of ETs is sufficient to induce invasiveness. In breast cancer patient serum, ET-1 was increased in those patients with lymph node metastases compared to those with no lymph node involvement; ETs, however, had no mitogenic effect on breast tumor cell lines in vitro. The benign mammary epithelial cell line, hTERT-HME1, and the poorly invasive breast tumor cell line MCF-7 secreted low levels of ET-1, while the invasive cell lines SKBR3 and MDAMB231 secreted high levels. Expression of the ETs and receptors by the cell lines broadly correlated with their in vitro invasiveness; overexpression of ETs in MCF-7 cells increased basal invasion. ET-mediated invasion involved both receptors and a calcium influx to induce a pertussis toxin-sensitive MAPK pathway. MMP-14 activity was induced via ET-RA in an autocrine manner. In contrast to transformed cells, ET stimulation or overexpression did not induce an invasive phenotype in benign cells. Benign cells do not respond to ETs, and ET expression is not sufficient to induce invasion; however, the level of ET production by tumor cells correlates with their invasiveness, and increasing expression of the ET axis promotes breast tumor cell invasion via both receptors, while MMP-14 is induced via ET-RA.  相似文献   

7.
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma.  相似文献   

8.
9.
10.
11.
Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3) and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.  相似文献   

12.
Serine/threonine protein phosphatase (PP) 2A is thought to dephosphorylate phosphorylated beta1 integrin to link with actin filaments (F-actin). However, whether PP2A participates in the regulation of F-actin assembly to which beta1 integrin is anchored is unclear. We report here that the core enzyme of PP2A (PP2A-AC), consisting of the regulatory subunit A (PP2A-A) and the catalytic subunit C (PP2A-C), forms a complex with beta1 integrin, a small GTPase Rac, and its effector IQGAP1 in non-malignant human mammary epithelial (HME) cells. Treatment of HME cells with okadaic acid (OA), an inhibitor of PP2A, caused cell rounding, reduction in F-actin assembly that links with beta1 integrin, and dissociation of IQGAP1-bound PP2A-AC from Rac-beta1 integrin. The dissociation of IQGAP1-PP2A-AC was accompanied by loss of F-actin gelating activity of Rac-beta1 integrin. In breast cancer MCF-7 cells, which possess PP2A-C but lack PP2A-A, IQGAP1 was not associated with Rac-beta1 integrin but with PP2A-C, with no distinct F-actin assembly that linked to Rac-beta1 integrin even before treatment with OA. We therefore propose that PP2A, especially PP2A-A, functions to maintain F-actin assembly to which beta1 integrin is anchored by recruitment of IQGAP1 to Rac-beta1 integrin.  相似文献   

13.
It is thought that environmental pollutants, such as polycyclic aromatic hydrocarbons (PAH), contribute to human breast tumorigenesis, yet their roles remain incompletely elucidated. The prototypical PAH 7,12-dimethylbenz(alpha)anthracene (DMBA) specifically and effectively induces mammary tumor formation in rodent models. In an attempt to explore the molecular mechanisms by which PAH initiates and promotes mammary tumorigenesis, we examined the expression of several cell cycle regulators in rat mammary tumors induced by DMBA. Expression of cyclin D1, murine double minute-2 (MDM2), and Akt was up-regulated in tumors in comparison to normal mammary glands, as indicated by RT-PCR, Western blot analysis, and immunohistochemical staining. Expression of p27Kip1 protein was also elevated in the tumors with increased cytoplasmic localization. However, RB protein remained hyperphosphorylated. To directly test the effects of DMBA, the MCF-7 human breast cancer cells were treated. DMBA induced MDM2 expression in a dose- and time-dependent fashion in the MCF-7 cells, and this activation appeared to be p53 dependent. These data suggest that activation of cyclin D1, MDM2, and AKT as well as increased expression and cytoplasmic localization of p27Kip1 may play a role in this model of environmental pollutant-induced mammary tumorigenesis.  相似文献   

14.
Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.  相似文献   

15.
Using microarray analysis, we identified a unique ras superfamily gene, termed RERG (ras-related and estrogen-regulated growth inhibitor), whose expression was decreased or lost in a significant percentage of primary human breast tumors that show a poor clinical prognosis. Importantly, high RERG expression correlated with expression of a set of genes that define a breast tumor subtype that is estrogen receptor-positive and associated with a slow rate of tumor cell proliferation and a favorable prognosis for these cancer patients. RERG mRNA expression was induced rapidly in MCF-7 cells stimulated by beta-estradiol and repressed by tamoxifen treatment. Like Ras, RERG protein exhibited intrinsic GDP/GTP binding and GTP hydrolysis activity. Unlike Ras proteins, RERG lacks a known recognition signal for COOH-terminal prenylation and was localized primarily in the cytoplasm. Expression of RERG protein in MCF-7 breast carcinoma cells resulted in a significant inhibition of both anchorage-dependent and anchorage-independent growth in vitro and inhibited tumor formation in nude mice. These features of RERG are strikingly different from most Ras superfamily GTP-binding pro-teins and suggest that the loss of RERG expression may contribute to breast tumorigenesis.  相似文献   

16.

Background and Aims

A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.

Methods

To study the reciprocal effects of adipocytes and cancer cells, we co-cultured human mature adipocytes and breast cancer cells in a system devoid of heterogeneous cell-cell contact. To analyze the factors that were secreted from adipocytes and that affected the invasive abilities of breast cancer cells, we detected different cytokines in various co-culture media. To study the communication of mature adipocytes and breast cancer cells in vivo, we chose 10 metastatic pathologic samples and 10 non-metastatic pathologic samples to do immunostaining.

Results

The co-culture media of human MCF-7 breast cancer cells and human mature adipocytes increased motility of MCF-7 cells. In addition, MMP-2 was remarkably up-regulated, whereas E-cadherin was down-regulated in these MCF-7 cells. Based on our co-culture medium chip results, we chose four candidate cytokines and tested their influence on metastasis individually. We found that IGFBP-2 enhanced the invasion ability of MCF-7 cells in vitro more prominently than did the other factors. In vivo, metastatic human breast tumors had higher levels of MMP-2 than did non-metastatic tumor tissue, whereas adipocytes around metastatic breast tumors had higher levels of IGFBP-2 than did adipocytes surrounding non-metastatic breast tumors.

Conclusions

IGFBP-2 secreted by mature adipocytes plays a key role in promoting the metastatic ability of MCF-7 breast cancer cells.  相似文献   

17.
WISP-2 is a Wnt-1-induced signaling protein identified as a member of CCN growth factor family. A role for this molecule during tumorigenesis is suspected but remains unproven. Here we show that WISP-2 expression was undetectable, or minimally detectable, in nontransformed human mammary epithelial cells, but was overexpressed in MCF-7 cells. Expression of WISP-2 in MCF-7 cells was modulated by serum and correlated with the serum-induced MCF-7 tumor cell proliferation, suggesting that WISP-2 is serum responsive and may be a positive regulator of tumor cell proliferation.  相似文献   

18.
Phosphatidic acid (PA), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (SPP) are naturally occurring phospholipids which induce a variety of effects as extracellular messengers. In this study, we compared the effects of these phospholipid signaling molecules on the migration of invasive and noninvasive breast cancer cell lines, an index of the metastatic potential of these cells. As previously demonstrated, invasive MDA-MB-231 breast cancer cells exhibited increased constitutive (nonstimulated) migration in comparison to poorly invasive MCF-7 cells. Phosphatidic acid employed at nanomolar concentrations markedly potentiated migration of the invasive cells but had no effect on migration of either the noninvasive MCF-7 cells or nonneoplastic human epithelial cells. Lysophosphatidic acid and sphingosine 1-phosphate inhibited both the directed (chemotactic) and random (chemokinetic) migration of MDA-MB-231 cells. Experiments were undertaken to characterize the signaling pathway involved in constitutive and PA-stimulated migration of MDA-MB-231 cells. The tyrosine kinase inhibitors staurosporine and genistein inhibited constitutive and PA-induced migration in a dose-dependent manner, consistent with a role for tyrosine phosphorylation in the migratory response. In addition, the phosphatidylinositol (PI) 3' kinase inhibitors wortmannin and LY294002 strongly inhibited both the constitutive and PA-stimulated migration of the invasive breast cancer cells, indicating that PI-3' kinase plays an important role in the metastatic migration of breast cancer cells. Finally, PA-induced migration of MDA-MB-231 was markedly attenuated by pretreatment of cells with Clostridium difficile Toxin B, pertussis toxin and suramin, implying a role for a Gi receptor-dependent process involving activation of the small GTP-binding protein Rho. Since an enhanced ability to migrate heightens the metastatic potential of cells within solid tumors, our results suggest that the metastatic capabilities of breast cancer cells may be enhanced by a receptor-driven cellular process initiated by phosphatidic acid or related lipid phosphate messengers.  相似文献   

19.
20.
The E-cadherin/catenin complex is a powerful invasion suppressor in epithelial cells. It is expressed in the human MCF-7 breast cancer cell line family, but functionally defective in the invasive MCF-7/6 variant. Previous experiments have shown that IGF-I, tamoxifen, retinoic acid and tangeretin are able to upregulate the function of this complex in MCF-7/6 cells. We investigated the effect of 8-prenylnaringenin (8-PN), the phytoestrogen present in hops and beer, on aggregation, growth and invasion in MCF-7/6 cells. 8-PN was found to stimulate E-cadherin-dependent aggregation and growth of MCF-7/6 cells in suspension. These effects could be inhibited by the pure anti-estrogen ICI 182,780. 8-PN did not affect invasion of MCF-7/6 cells in the chick heart assay in vitro. In all these aspects 8-PN mimics the effects of 17beta-estradiol on MCF-7/6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号