首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用生态学的现状与展望   总被引:7,自引:3,他引:4  
何兴元  曾德慧 《应用生态学报》2004,15(10):1691-1697
应用生态学是迅猛发展的现代生态学的主体.寻求解决人口、资源、环境等问题是应用生态学发展的主要动力.经过40年的发展,应用生态学已发展成为一个庞大的学科门类.应用生态学未来的发展应更多地关注受人类影响和管理的生态系统并将人视为生态系统的组成成分.应用生态学在当前和今后应给予优先重视的研究领域,包括生态系统与生物圈的可持续利用、生态系统服务与生态设计、转基因生物的生态学评价、生物入侵生态学、流行病生态学、生态预报、生态过程及其调控等.在今后若干年内。围绕这些领域,可能会出现广泛而活跃的研究热潮以及一些新的特点.  相似文献   

2.
High‐throughput sequencing is becoming increasingly important in microbial ecology, yet it is surprisingly under‐used to generate or test biogeographic hypotheses. In this contribution, we highlight how adding these methods to the ecologist toolbox will allow the detection of new patterns, and will help our understanding of the structure and dynamics of diversity. Starting with a review of ecological questions that can be addressed, we move on to the technical and analytical issues that will benefit from an increased collaboration between different disciplines.  相似文献   

3.
分子标记、基因流、种群空间动态是当前生命科学研究中的热点领域。RFLPs、RAPDs、微卫星等新的分子标记的不断涌现,促进了这些领域的飞速发展。对种群空间动态研究中的等级岛屿模型、距离隔离模型、脚踏石模型、集合种群模型等方面许多令人瞩目的进展做了介绍。同时还介绍了遗传距离、基因流及其测度、基因突变模型、3S技术、空间精确性种群模型和基因频率的空间自相关等热点领域。最后,就空间分子生态学存在的问题与前景进行了讨论,指出了空间分子生态学可能的发展方向。  相似文献   

4.
Community ecology and ecosystem ecology provide two perspectives on complex ecological systems that have largely complementary strengths and weaknesses. Merging the two perspectives is necessary both to ensure continued scientific progress and to provide society with the scientific means to face growing environmental challenges. Recent research on biodiversity and ecosystem functioning has contributed to this goal in several ways. By addressing a new question of high relevance for both science and society, by challenging existing paradigms, by tightly linking theory and experiments, by building scientific consensus beyond differences in opinion, by integrating fragmented disciplines and research fields, by connecting itself to other disciplines and management issues, it has helped transform ecology not only in content, but also in form. Creating a genuine evolutionary ecosystem ecology that links the evolution of species traits at the individual level, the dynamics of species interactions, and the overall functioning of ecosystems would give new impetus to this much-needed process of unification across ecological disciplines. Recent community evolution models are a promising step in that direction.  相似文献   

5.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

6.
Summary   This interview with Professor Richard Hobbs, a prominent Australian researcher, professor and journal editor, traces his involvement in ecology and the relatively new disciplines of landscape ecology and restoration ecology. Born and educated as a plant ecologist in Scotland, Richard undertook postdoctoral research in the USA before taking up a series of research positions in Australia that steered him towards landscape ecology and restoration ecology. Having maintained an interest and involvement in international organizations, Richard provides comment in this interview on the progress of ecological restoration practice in Australasia compared to North America and comments on the need for ensuring research in these disciplines is strongly linked to management, is as broadly relevant as possible, and, is carried out at appropriate scales.  相似文献   

7.
生态学既是生物学的分支学科,也是环境科学、地球系统科学的重要组成部分,其研究成果可直接服务于植物、动物、微生物的生物多样性保护、生物资源利用及生物产业管理等应用领域.生态系统概念将经典生态学或者基础生态学研究扩展到了生态系统生态学或者生态系统科学的新阶段,奠定了大尺度及全球生态环境科学研究的理论基础,促进了生物学、地理...  相似文献   

8.
景观生态学与退化生态系统恢复   总被引:34,自引:5,他引:29  
退化生态系统的恢复是一项艰巨任务,它需要考虑到所要恢复的退化生态系统的结构,多样性和其动态的整体性和长期性。现在对于退化生态系统恢复研究已经要使生态学家们关注受损生态系统的理论和实际问题。退化生态系统恢复所面临的挑战是理解和利用生态演替理论来完成并加速恢复进程。恢复的主要目标是建立一个自维持的,由不同的群落或生态系统组成的能够满足不同需要如生物保护和粮食生产需要的景观。景观生态学关注于大的空间尺度的生态学问题。景观生态学研究方法可以为退化生态系统恢复实践提供指导。在解决退化生态系统的恢复问题时,景观生态学的方法在理论和实践上是有效的。景观生态学中的核心概念和其一般原理斑块形状、生态系统间相互作用、镶嵌系列等都同退化生态系统的恢复有着密切的关系。如恢复地点的选择和适当的恢复要素的空间配置。在评价退化生态系统的恢复是否取得成功,利用景观生态学也具有重要的意义。景观生态学理论如景观格局与景观异质性理论,干扰理论和尺度理论都能够指导退化生态系统的恢复实践。同样地,退化生态系统的恢复可以为景观生态学的研究提供非常恰当的实验场。寓景观生态学思想于退化生态系统恢复过程是一种新的有效途径。  相似文献   

9.
扩散生态学及其意义   总被引:1,自引:0,他引:1  
扩散研究是生态学研究中的一个热点领域 ,而扩散生态学则是生物学领域一门新的分支学科。本文综述了扩散生态学研究的一些基本理论问题 ,包括扩散的定义、扩散生态学的研究内容及其与生物学其它分支学科的关系 ,并阐述了研究扩散的重要意义。扩散生态学的研究内容十分广泛 ,既涉及所有生物 (从微生物到脊椎动物 )的生态学 (如复合种群、群落、生态系统多样性、复杂性和稳定性 )和进化 (如种化 )等理论问题 ,又涉及物种保护、生物多样性保育、有害生物 (包括外来物种 )的控制、流行病防范、环境保护和人口管理等应用问题。因此 ,研究生物的扩散具有十分重要的理论和实践意义。  相似文献   

10.
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.  相似文献   

11.
作为传统的交叉学科,化学生态学在解决农林生产和人类健康的问题中逐步成为内涵越来越丰富的学科领域;同时,技术进步极大推动着化学生态学的发展,使得我们对于生物之间化学通讯规律的认识更加深入和全面。本“昆虫化学生态学”专辑论文全面反映了我国昆虫化学生态学研究的特色,即以农林生产应用为导向,传统和现代技术并用,研究水平逐步和国际同步。在组学的技术背景下,坚持交叉学科特色,加强合作,化学生态学研究在粮食安全、生态保护、应对全球气候变化等方面会发挥更大作用。  相似文献   

12.
Both biogeography and ecology seek to understand the processes that determine patterns in nature, but do so at different spatial and temporal scales. The two disciplines were not always so different, and are recently converging again at regional spatial scales and broad temporal scales. In order to avoid confusion and to hasten progress at the converging margins of each discipline, the following papers were presented at a symposium in the International Biogeography Society''s 2011 meeting, and are now published in this issue of the Philosophical Transactions of the Royal Society B. In a novel approach, groups of authors were paired to represent biogeographic and ecological perspectives on each of four topics: niche, comparative ecology and macroecology, community assembly, and diversity. Collectively, this compilation identifies points of agreement and disagreement between the two views on these central topics, and points to future research directions that may build on agreements and reconcile differences. We conclude this compilation with an overview on the integration of biogeography and ecology.  相似文献   

13.
Recently there has been growing interest in the use of maximum relative entropy (MaxREnt) as a tool for statistical inference in ecology. In contrast, here we propose MaxREnt as a tool for applying statistical mechanics to ecology. We use MaxREnt to explain and predict species abundance patterns in ecological communities in terms of the most probable behaviour under given environmental constraints, in the same way that statistical mechanics explains and predicts the behaviour of thermodynamic systems. We show that MaxREnt unifies a number of different ecological patterns: (i) at relatively local scales a unimodal biodiversity-productivity relationship is predicted in good agreement with published data on grassland communities, (ii) the predicted relative frequency of rare vs. abundant species is very similar to the empirical lognormal distribution, (iii) both neutral and non-neutral species abundance patterns are explained, (iv) on larger scales a monotonic biodiversity-productivity relationship is predicted in agreement with the species-energy law, (v) energetic equivalence and power law self-thinning behaviour are predicted in resource-rich communities. We identify mathematical similarities between these ecological patterns and the behaviour of thermodynamic systems, and conclude that the explanation of ecological patterns is not unique to ecology but rather reflects the generic statistical behaviour of complex systems with many degrees of freedom under very general types of environmental constraints.  相似文献   

14.
15.
生态学研究的新领域--分子生态学   总被引:4,自引:0,他引:4  
分子生态是生态学的一个新的研究领域。它采用分子生物学的技术与方法来研究生态活动规律的分子机理。本文简要介绍了分子生态学的定义、研究内容、研究方法和研究热点等,以期描述出分子生态学的概貌。  相似文献   

16.
旅游生态学研究进展   总被引:3,自引:1,他引:2  
张香菊  钟林生 《生态学报》2019,39(24):9396-9407
作为生态学和旅游学相交叉的一门新兴分支学科,旅游生态学关注旅游发展中的生态环境问题,以生态学原理指导旅游生态系统管理,是促进旅游业可持续发展的重要理论支撑。论文采用引文可视化分析软件CiteSpace5.3和文献阅读相结合的方法分析旅游生态学研究的国际进展。分析发现,文献数量在进入21世纪后快速增长,文献来源地集中在北美和欧洲国家,研究方法呈现多学科综合性和最新科学技术成果应用及时等特点,研究内容主要集中在旅游活动的生态环境影响、旅游生态系统管理和旅游可持续发展的测度及实现途径3个方面。基于国际进展的分析,论文最后提出我国旅游生态学研究应在学科的基础理论、旅游影响的系统性和持续性、旅游生态修复、旅游开发活动的生态环境影响、生态环境变化对旅游业发展的影响和本土性旅游生态系统管理方法等方面加强。  相似文献   

17.
Prof. Dr. Pieter Hendrik (Piet) Nienhuis worked for almost 40 years in all aspects of aquatic ecology and environmental science and retired on 31 October 2003. He can be characterised as a distinguished scientist, shaped in an applied estuarine and aquatic research ambience of the former Delta Institute for Hydrobiological Research (DIHO) in Yerseke in the Netherlands. His appointment as a full professor at the Radboud University Nijmegen offered him a challenging step from monodisciplinarity in ecology, via multidisciplinarity in the application of ecological knowledge in river science to interdisciplinarity in environmental science and management. This paper describes his education, teaching activities, research, scientific publications, science management, and significance for various scientific disciplines. He made important contributions to biosystematics of angiosperms and algae, the ecology of seagrasses, nutrient cycling and eutrophication in estuarine ecosystems, and the integrated modelling of the ecological functioning of estuaries. Subsequently, he paid much attention to environmental problems in river basins, ecological rehabilitation and sustainable development. His work influenced the view of ecologists, aquatic scientists and water managers in the Netherlands as well as abroad, in particular regarding the drawbacks of compartmentalization of the estuaries and the importance of connectivity and morphodynamics in river systems. In hindsight, it appears as a logical line that he gradually moved from estuarine ecological research that became increasingly driven by societal and environmental problems to the field of environmental science and management.  相似文献   

18.
Wolfram Beyschlag  Ronald J. Ryel   《Flora》2007,202(8):608-623
A sizeable number of scientists and funding organisations are of the opinion that the relevance of plant physiological ecology as an important discipline has declined to the point that it is no longer considered as one of the important topics of ecological research. Plant physiological ecology is typically associated with the autecological plant research conducted during the latter portion of the 20th century or, even worse, simply with gas exchange measurements. However, taking a closer look, it becomes obvious that, by focusing on the intermediate integration levels (individuals, populations), this discipline represents an essential link between the high integration levels (communities, ecosystems, biosphere) and the disciplines at the bottom of the complexity hierarchy (physiology, molecular biology). In this paper we show that the principal question of all ongoing community and ecosystem level research – What is the mechanistic background of vegetation composition, biodiversity structure and dynamics and how is this linked to fluxes of matter at the community and higher levels of organisation? – can only be answered if the mechanism of interactions between the relevant organisms are understood. In consequence, the classical discipline of plant physiological ecology will continuously develop into a truly interdisciplinary experimental ecology of interactions and its importance will rather increase than diminish. Promising activities of this kind are already underway. Scientists needed for this new direction should have a rather broad scientific perspective, including knowledge and experience in fields outside of typical ecological research, instead of being specialists for single ecophysiological aspects.  相似文献   

19.
20.
Synopsis The goal of an ecomorphological study is to understand the interactions between the morphology of organisms and their ecology. Both the morphology and the ecology presented by an organism are directly or indirectly under the influence of the environmental conditions that the organism experiences and its heritable composition. The development and interpretation of the central element of ecomorphological studies, the comparison between patterns of variation of morphological and ecological characters, depends heavily on the mechanistic framework provided by functional morphological and biomechanical studies. The cause-and-effect hypotheses derived from this comparison can be tested with performance trials. Ecomorphology forms an integral part of comparative biology, along with ecophysiology, behavioral ecology, and evolutionary ecology. Current issues in ecomorphological research that are addressed in this volume include application of a more functional approach to the choice of characters, integration of morphological, behavioral, and physiological information to address adaptation, and the expansion of spatial and temporal (ontogenetic and evolutionary) scales of ecomorphological questions. Future directions for Ecomorphology include broadening the knowledge base, further integration of information from other disciplines, examination of the role of environmental and genetic factors in producing and maintaining ecological and morphological diversity, and application of ecomorphological insights to questions of community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号