首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of the primary stage of cell-cell interaction is assumed, including not only the classical electrostatic and electrodynamic energies in the sense of DLVO theory but also steric interaction energy, the energy of specific and non-specific bonds and the energy due to changes of surface potential. Furthermore, in this paper, we exploit recent advances in the understanding of the structure of the cell surface (glycocalyx), assuming the fixed electrostatic charges (dissociated groups of the glycocalyx), to be space charge densities and the glycocalyx itself to be an adsorption layer.In this first part the profile of the electrostatic potential between two cells is calculated on the basis of the linear Poisson-Boltzmann equation (analytical integration) and discussed in dependence on charge densities of the glycocalyx, the separation distance between cells and the ionic strength of the suspension medium.  相似文献   

2.
A theoretical study of the ion atmosphere contribution to the binding free energy of the lambda repressor-operator complex is presented. The finite-difference form of the Poisson-Boltzmann equation was solved to calculate the electrostatic interaction energy of the amino-terminal domain of the lambda repressor with a 9 or 45 base pair oligonucleotide. Calculations were performed at various distances between repressor and operator as well as at different salt concentrations to determine ion atmosphere contributions to the total electrostatic interaction. Details in the distribution of charges on DNA and protein atoms had a strong influence on the calculated total interaction energies. In contrast, the calculated salt contributions are relatively insensitive to changes in the details of the charge distribution. The results indicate that the ion atmosphere contribution favors association at all protein-DNA distances studied. The theoretical number of ions released upon repressor-operator binding appears to be in reasonable agreement with experimental data.  相似文献   

3.
A biophysical model for the equilibrium curvature of a composite membrane element is derived taking into account the mechanical bilayer properties and the adjacent charged protein layers. The minimum of the total free energy density with respect to the curvature of such a membrane curved was estimated from the sum of the electrostatic free energy density of the charges of the membrane and the elastic surface energy density due to bending the lipid bilayer membrane. It was shown that the equilibrium curvature, i.e. the spontaneous curvature, of such a charged composite sandwich-like membrane depends inversely on the bending stiffness of the lipid membrane itself and directly on the charge amount inside and outside the membrane to the second power. Furthermore the geometric and electrostatic structure of the protein layers and the physico-chemical environment conditions are involved. Corresponding to the model developed a "standard RBC" membrane element has a negative spontaneous curvature, accounting for a discocyte RBC shape. The shape change from a discocyte to a more stomatocytic shape (increase in the negative spontaneous curvature) after reducing the charges in the glycocalyx is also explained within this model.  相似文献   

4.
The Poisson-Boltzmann equation is modified to consider charge ionogenicity, steric exclusion, and charge distribution in order to describe the perimembranous electrostatic potential profile in a manner consistent with the known morphology and biochemical composition of the cell's glycocalyx. Exact numerical and approximate analytical solutions are given for various charge distributions and for an extended form of the Donnan potential model. The interrelated effects of ionic conditions, bulk pH, ion binding, local dielectric, steric volume exclusion, and charge distribution on the local potential, pH, and charge density within the glycocalyx are examined. Local charge-induced, potential-mediated pH reductions cause glycocalyx charge neutralization. Under certain conditions, local potentials may be insensitive to ionic strength or may decrease in spite of increasing charge density. The volume exclusion of the glycocalyx reduces the local ion concentration, thereby increasing the local potential. With neutral lipid membranes, the Donnan and surface potential agree if the glycocalyx charge distribution is both uniform and several times thicker than the Debye length (approximately 20 A in thickness under physiological conditions). Model limitations in terms of application to microdomains or protein endo- and ectodomains are discussed.  相似文献   

5.
Evaluation of catalytic free energies in genetically modified proteins   总被引:5,自引:0,他引:5  
A combination of the empirical valence bond method and a free energy perturbation approach is used to simulate the activity of genetically modified enzymes. The simulations reproduce in a semiquantitative way the observed effects of mutations on the activity and binding free energies of trypsin and subtilisin. This suggests that we are approaching a stage of quantitative structure-function correlation of enzymes. The analysis of the calculations points towards the electrostatic energy of the reacting system as the key factor in enzyme catalysis. The changes in the charges of the reacting system and the corresponding changes in "solvation" free energy (generalized here as the interaction between the charges and the given microenvironment) are emphasized. It is argued that a reliable evaluation of these changes might be sufficient for correlating structure and catalysis. The use of free energy perturbation methods and thermodynamic cycles for evaluation of solvation energies and reactivity is discussed, pointing out our early contributions. The apparent elaborated nature of our treatment is clarified, explaining that such a treatment is essential for consistent calculations of chemical reactions in polar environments. The problems associated with seemingly more rigorous quantum mechanical methods are discussed, emphasizing the inconsistency associated with using gas phase charge distributions. The importance of dynamic aspects is examined by evaluating the autocorrelation of the protein "reaction field" on the reacting substrate. It is found that, at least in the present case, dynamic effects are not important. The nature of the catalytic free energy is considered, arguing that the protein provides preoriented dipoles (polarized to stabilize the transition state charge distribution) and small reorganization energy, thus reducing the activation free energy. The corresponding catalytic free energy is related to the folding free energy, which is being invested in aligning the active site dipoles.  相似文献   

6.
Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx.  相似文献   

7.
J K Hwang  A Warshel 《Biochemistry》1987,26(10):2669-2673
The catalytic free energy and binding free energies of the native and the Asn-155----Thr, Asn-155----Leu, and Asn-155----Ala mutants of subtilisin are calculated by the empirical valence bond method and a free energy perturbation method. Two simple procedures are used; one "mutates" the substrate, and the other "mutates" the enzyme. The calculated changes in free energies (delta delta G not equal to cat and delta delta Gbind) between the mutant and native enzymes are within 1 kcal/mol of the corresponding observed values. This indicates that we are approaching a quantitative structure-function correlation. The calculated changes in catalytic free energies are almost entirely due to the electrostatic interaction between the enzyme-water system and the charges of the reacting system. This supports the idea that the electrostatic free energy associated with the changes of charges of the reacting system is the key factor in enzyme catalysis.  相似文献   

8.
Solutions of the Poisson-Boltzmann equation yield potential profiles and equilibrium distributions of ions on either side of a spherical shell membrane across which there exists a separation of ionic charges. For the special case in which the membrane is permeable to only one ion the total charge separation is analyzed in terms of the potential difference given by the Nernst equation. Potential profiles and ionic charge distributions are also given for situations involving a uniform distribution of fixed charges within the membrane.  相似文献   

9.
10.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

11.
Distributions of phosphate backbone-produced electrostatic potentials around several tRNAs were calculated by solving the nonlinear Poisson-Boltzmann equation. The tRNAs were either free or bound to the proteins involved in translation: aminoacyl-tRNA and elongation factor EF-Tu. We identified several regions of strong negative potential related to typical structural patterns of tRNA and invariant throughout the tRNAs. The patterns are conserved upon binding of tRNAs to the synthetase and the EF-Tu. Variation of tRNA charge in our theoretical calculations of electrostatic potential-mediated pK shifts of pH-dependent labels attached to tRNA, compared to experimentally observed pK shifts for those labels, shows that the total charge of tRNA is large, within the interval of -40 to -70 proton charges. The electrostatic field of tRNA is sufficient to cause ionization of histidine residues of ARSase, causing additional free energy of ARSase-tRNA interaction of at least several kcal/mol. This may discriminate proteins with respect to the particular tRNA at large distances. Two types of tRNA-protein electrostatic recognition mechanisms are discussed. One, more specific, involves charges induced on protein by the large electrostatic potential of tRNA, while the other, less specific, does not involve induced charges.  相似文献   

12.
A new method for calculating the total electrostatic free energy of a macromolecule in solution is presented. It is applicable to molecules of arbitrary shape and size, including membranes or macromolecular assemblies with substrate molecules and ions. The method is derived from integrating the energy density of the electrostatic field and is termed the field energy method. It is based on the dielectric model, in which the solute and the surrounding water are regarded as different continuous dielectrics. The field energy method yields both the interaction energy between all charge pairs and the self energy of single charges, effectively accounting for the interaction with water. First, the dielectric boundary and mirror charges are determined for all charges of the solute. The energy is then given as a simple function of the interatomic distances, and the standard atomic partial charges and volumes. The interaction and self energy are shown to result from three-body and pairwise interactions. Both energy terms explicitly involve apolar atoms, revealing that apolar groups are also subject to electrostatic forces. We applied the field energy method to a spherical model protein. Comparison with the Kirkwood solution shows that errors are within a small percentage. As a further test, the field energy method was used to calculate the electrostatic potential of the protein superoxide dismutase. We obtained good agreement with the result from a program that implements the numerical finite difference algorithm. The field energy method provides a basis for energy minimization and dynamics programs that account for the solvent and screening effect of water at little computational expense.  相似文献   

13.
To investigate the charge effect of the endothelial surface glycocalyx on microvessel permeability, we extended the three-dimensional model developed by Fu et al. (J Biomech Eng 116: 502-513, 1994) for the interendothelial cleft to include a negatively charged glycocalyx layer at the entrance of the cleft. Both electrostatic and steric exclusions on charged solutes were considered within the glycocalyx layer and at the interfaces. Four charge-density profiles were assumed for the glycocalyx layer. Our model indicates that the overall solute permeability across the microvessel wall including the surface glycocalyx layer and the cleft region is independent of the charge-density profiles as long as they have the same maximum value and the same total charge. On the basis of experimental data, this model predicts that the charge density would be 25-35 meq/l in the glycolcalyx of frog mesenteric capillaries. An intriguing prediction of this model is that when the concentrations of cations and anions are unequal in the lumen due to the presence of negatively charged proteins, the negatively charged glycocalyx would provide more resistance to positively charged solutes than to negatively charged ones.  相似文献   

14.
The role of electrostatic interactions between the charges carried by the titratable groups in the different aggregates of constitutive phycocyanin from Fremyella diplosiphon has been studied by using a simple theoretical approach based on the modified Tanford-Kirkwood model. The electrostatic potential has also been calculated by means of a numerical solution of the linearized Poisson-Boltzmann equations using the finite-differences technique. The pH dependence of the electrostatic contribution to free energy suggests an electrostatic stabilization of the alpha- and beta-subunits as well as of the (alpha beta)-monomer over a broad pH interval. The charge distributions in the individual alpha- and beta-subunits produce electrostatic complementarity and promote the assembly of the subunits to the (alpha beta)-monomer, as well as of the monomers to the larger trimeric and hexameric aggregates. Trimer-trimer electrostatic interactions exhibit strong pH dependence, predicting an association/dissociation equilibrium with a midpoint at pH 6. The electrostatic trimer-trimer interactions correspond to the steric fit, suggesting that electrostatic interactions may initially help to orient the trimers during aggregation. The distribution of the electrostatic potential of the monomers and of the higher aggregates suggests that it plays an important role also in phycocyanin-linker protein binding.  相似文献   

15.
B. Roux 《Biophysical journal》1997,73(6):2980-2989
A modified Poisson-Boltzmann equation is developed from statistical mechanical considerations to describe the influence of the transmembrane potential on macromolecular systems. Using a Green's function formalism, the electrostatic free energy of a protein associated with the membrane is expressed as the sum of three terms: a contribution from the energy required to charge the system's capacitance, a contribution corresponding to the interaction of the protein charges with the membrane potential, and a contribution corresponding to a voltage-independent reaction field free energy. The membrane potential, which is due to the polarization interface, is calculated in the absence of the protein charges, whereas the reaction field is calculated in the absence of transmembrane potential. Variations in the capacitive energy associated with typical molecular processes are negligible under physiological conditions. The formulation of the theory is closely related to standard algorithms used to solve the Poisson-Boltzmann equation and only small modifications to current source codes are required for its implementation. The theory is illustrated by examining the voltage-dependent membrane insertion of a simple polyalanine alpha-helix and by computing the electrostatic potential across a 60-A-diameter sphere meant to represent a large intrinsic protein.  相似文献   

16.
M K Gilson  B Honig 《Proteins》1988,4(1):7-18
In this report we describe an accurate numerical method for calculating the total electrostatic energy of molecules of arbitrary shape and charge distribution, accounting for both Coulombic and solvent polarization terms. In addition to the solvation energies of individual molecules, the method can be used to calculate the electrostatic energy associated with conformational changes in proteins as well as changes in solvation energy that accompany the binding of charged substrates. The validity of the method is examined by calculating the hydration energies of acetate, methyl ammonium, ammonium, and methanol. The method is then used to study the relationship between the depth of a charge within a protein and its interaction with the solvent. Calculations of the relative electrostatic energies of crystal and misfolded conformations of Themiste dyscritum hemerythrin and the VL domain of an antibody are also presented. The results indicate that electrostatic charge-solvent interactions strongly favor the crystal structures. More generally, it is found that charge-solvent interactions, which are frequently neglected in protein structure analysis, can make large contributions to the total energy of a macromolecular system.  相似文献   

17.
The possible involvement of Steric repulsion which may originate between the surface glycoproteins of interacting cells, has been considered with particular reference to cellular cohesion. By employing recently available analytical expressions, the magnitude of the Steric energy has been estimated and compared with the electrostatic and electrodynamic interaction energies.In an attempt to illustrate the characteristics of the repulsive steric force relative to the electrostatic force, the surfaces of three mammalian cell lines were defined in terms of surface carbohydrate and zeta potential.It has been shown that the steric force is very large relative to the force arising from the overlap of the electrical double layers and is critically dependent on the amount and density of glycoprotein on the cell surface. In this respect the true cell surface area is an important parameter.The introduction of the steric force does not however unambiguously explain the relative cohesiveness of the cells examined.  相似文献   

18.
Two approaches for calculating electrostatic effects in proteins are compared and ana analysis is presented of the dependence of calculated properties on the model used to define the charge distribution. Changes in electrostatic free energy have been calculated using a screened Coulomb potential (SCP) with a distance-dependent effective dielectric permittivity to model bulk solvent effects and a finite difference approach to solve the Poisson-Boltzmann (FDPB) equation. The properties calculated include shifts in dissociation constants of ionizable groups, the effect of annihilating surface charges on the binding of metals, and shifts in redox potentials due to changes in the charge of ionizable groups. In the proteins considered the charged sites are separated by 3.5-12 A. It is shown that for the systems studied in this distance range the SCP yields calculated values which are at least as accurate as those obtained from solution of the FDPB equation. In addition, in the distance range 3-5 A the SCP gives substantially better results than the FDPB equation. Possible sources of this difference between the two methods are discussed. Shifts in binding constants and redox potentials were calculated with several standard charge sets, and the resulting values show a variation of 20-40% between the 'best' and 'worst' cases. From this study it is concluded that in most applications, changes in electrostatic free energies can be calculated economically and reliably using an SCP approach with a single functional form of the screening function.  相似文献   

19.
By using a combined quantum-mechanical and molecular-mechanical potential in molecular dynamics simulations, we have investigated the effects of the enzyme electric field of dihydrofolate reductase on the electronic polarization of its 5-protonated dihydrofolate substrate at various stages of the catalyzed hydride transfer reaction. Energy decomposition of the total electrostatic interaction energy between the ligands and the enzyme shows that the polarization effect is 4% of the total electrostatic interaction energy, and, significantly, it accounts for 9kcal/mol of transition state stabilization relative to the reactant state. Therefore it is essential to take account of substrate polarization for quantitative interpretation of enzymatic function and for calculation of binding free energies of inhibitors to a protein. Atomic polarizations are calculated as the differences in the average atomic charges on the atoms in gas phase and in molecular simulations of the enzyme; this analysis shows that the glutamate tail and the pterin ring are the highly polarized regions of the substrate. Electron density difference plots of the reactant and product complexes at instantaneous configurations in the enzyme active center confirm the inferences made on the basis of partial atomic charges.  相似文献   

20.
Electrostatic potentials were determined for the soluble tryptic core of rat cytochrome b5 (using a structure derived from homology modeling) and a simulated anion-exchange surface through application of the linearized finite-difference Poisson-Boltzmann equation with the simulation code UHBD. Objectives of this work included determination of the contributions of the various charged groups on the protein surface to electrostatic interactions with a simulated anion-exchange surface as a function of orientation, separation distance, and ionic strength, as well as examining the potential existence of a preferred contact orientation. Electrostatic interaction free energies for the complex of the model protein and the simulated surface were computed using the electrostatics section of UHBD employing a 110(3) grid. An initial coarse grid spacing of 2.0 A was required to obtain correct boundary conditions. The boundary conditions of the coarse grid were used in subsequent focusing steps until the electrostatic interaction free energies were relatively independent of grid spacing (at approximately 0.5 A). Explicit error analyses were performed to determine the effects of grid spacing and other model assumptions on the electrostatic interaction free energies. The computational results reveal the presence of a preferred interaction orientation; the interaction energy between these two entities, of opposite net charge, is repulsive over a range of orientations. The electrostatic interaction free energies appear to be the summation of multiple fractional interactions between the protein and the anion-exchange surface. The simulation results are compared with those of ion-exchange adsorption experiments with site-directed mutants of the recombinant protein. Comparisons of the results from the computational and experimental studies should lead to a better understanding of electrostatic interactions of proteins and charged surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号