首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of adrenaline on triacylglycerol synthesis and secretion was examined in isolated rat hepatocytes. Cells were incubated with 0.5 mM-[1-14C]oleate, and the accumulation of triacylglycerol and [14C]triacylglycerol was measured in the incubation medium. Triacylglycerol appearing in the medium was present in a form with properties similar to very-low-density lipoproteins. Triacylglycerol, [14C]triacylglycerol and [14C]phospholipid contents of hepatocytes were also determined. Addition of 10 microM-(-)adrenaline decreased accumulation of glycerolipid in the incubation medium and also decreased cellular [14C]phospholipid content. Prazosin abolished these effects, whereas propranolol did not. The hormone did not affect cellular triacylglycerol content or rates of incorporation of [1-14C]oleate into cell triacylglycerol. The effect of adrenaline on the removal of newly secreted triacylglycerol and the secretion of synthesized glycerolipid was also examined. The catecholamine did not affect rates of removal of newly secreted triacylglycerol. Adrenaline did inhibit the secretion of pre-synthesized lipid by the cells, as assessed by the appearance of radiolabelled triacylglycerol from hepatocytes that had been preincubated with [1,2,3-3H]-glycerol. Adrenaline did not affect rates of fatty acid uptake by hepatocytes, but did stimulate oxidation of [1-14C]oleate, principally to 14CO2.  相似文献   

2.
Developing soybean (cv. Dare) cotyledons harvested at 30 days after flowering were pulse-labeled with [1-(14)C]oleoyl-CoA. The metabolic interrelation of radiolabeled unsaturated fatty acids between the major glycerolipid classes was determined at various time intervals. At chase time zero, [(14)C]oleic acid accounted for 99.2% of the total glycerolipid radioactivity, and phospholipids contained 92% of the total incorporated radioactivity. With time, phospholipids were metabolized in triacylglycerol biosynthesis and radioactivity was detected in polyunsaturated fatty acids. The hypothesis that phospholipids were metabolic intermediates in polyunsaturated fatty acid biosynthesis was tested by comparing the theoretical and the actual amount of radiolabeled oleic acid that was associated with triacylglycerol as a function of time. The radioactive oleic acid found in triacylglycerol at various intervals was derived from phospholipids via a diacylglycerol intermediate. Assuming no phospholipid desaturation, the potential or theoretical amounts of [(14)C]oleic acid that could be transferred to triacylglycerol from phospholipids was defined by a system of differential equations. The results demonstrated that the decline in [(14)C]oleic acid from phospholipid after long chase intervals was equal to the total amount of radioactive unsaturated fatty acids found in neutral lipids. The difference between the theoretical and actual amounts of [(14)C]oleic acid present in triacylglycerol after long time intervals was equal to the amount of radioactivity present in polyunsaturated fatty acids. Based upon those findings in soybeans, the desaturation of oleic acid associated with phospholipids was highly probable.  相似文献   

3.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

4.
Normal female rats were given 15mug of ethynyloestradiol/kg body wt. for 14 days and were killed on day 15 after starvation for 12-14h. The livers were isolated and were perfused with a medium containing washed bovine erythrocytes, bovine serum albumin, glucose and [1-(14)C]oleic acid; 414mumol of oleate were infused/h during a 3h experimental period. The output of bile and the flow of perfusate/g of liver were decreased in livers from animals pretreated with ethynyloestradiol, whereas the liver weight was increased slightly. The rates of uptake and of utilization of [1-(14)C]oleate were measured when the concentration of unesterified fatty acid in the perfusate plasma was constant. The uptake of unesterified fatty acid was unaffected by pretreatment of the animal with oestrogen; however, the rate of incorporation of [1-(14)C]oleate into hepatic and perfusate triacylglycerol was stimulated, whereas the rate of conversion into ketone bodies was impaired by treatment of the rat with ethynyloestradiol. Pretreatment of the rat with ethynyloestradiol increased the output of very-low-density lipoprotein triacylglycerol, cholesterol, phospholipid and protein. The production of (14)CO(2) and the incorporation of radioactivity into phospholipid, cholesteryl ester and diacylglycerol was unaffected by treatment with the steroid. The net output of glucose by livers from oestrogen-treated rats was impaired despite the apparent increased quantities of glycogen in the liver. The overall effect of pretreatment with oestrogen on hepatic metabolism of fatty acids is the channeling of [1-(14)C]oleate into synthesis and increased output of triacylglycerol as a moiety of the very-low-density lipoprotein, whereas ketogenesis is decreased. The effect of ethynyloestradiol on the liver is apparently independent of the nutritional state of the animal from which the liver was obtained. It is pertinent that hepatocytes prepared from livers of fed rats that had been treated with ethynyloestradiol produced fewer ketone bodies and secreted more triacylglycerol than did hepatocytes prepared from control animals. In these respects, the effects of the steroid were similar in livers from fed or starved (12-14h) rats. Oestrogens may possibly inhibit hepatic oxidation of fatty acid, making more fatty acid available for the synthesis of triacylglycerol, or may stimulate the biosynthesis of triacylglycerol, or may be active on both metabolic pathways.  相似文献   

5.
Long chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for both anabolic and catabolic pathways. We have hypothesized that each of the five ACSL isoforms partitions FA toward specific downstream pathways. Acsl1 mRNA is increased in cells under both lipogenic and oxidative conditions. To elucidate the role of ACSL1 in hepatic lipid metabolism, we overexpressed an Acsl1 adenovirus construct (Ad-Acsl1) in rat primary hepatocytes. Ad-ACSL1, located on the endoplasmic reticulum but not on mitochondria or plasma membrane, increased ACS specific activity 3.7-fold. With 100 or 750 mum [1-(14)C]oleate, Ad-Acsl1 increased oleate incorporation into diacylglycerol and phospholipids, particularly phosphatidylethanolamine and phosphatidylinositol, and decreased incorporation into cholesterol esters and secreted triacylglycerol. Ad-Acsl1 did not alter oleate incorporation into triacylglycerol, beta-oxidation products, or total amount of FA metabolized. In pulse-chase experiments to examine the effects of Ad-Acsl1 on lipid turnover, more labeled triacylglycerol and phospholipid, but less labeled diacylglycerol, remained in Ad-Acsl1 cells, suggesting that ACSL1 increased reacylation of hydrolyzed oleate derived from triacylglycerol and diacylglycerol. In addition, less hydrolyzed oleate was used for cholesterol ester synthesis and beta-oxidation. The increase in [1,2,3-(3)H]glycerol incorporation into diacylglycerol and phospholipid was similar to the increase with [(14)C]oleate labeling suggesting that ACSL1 increased de novo synthesis. Labeling Ad-Acsl1 cells with [(14)C]acetate increased triacylglycerol synthesis but did not channel endogenous FA away from cholesterol ester synthesis. Thus, consistent with the hypothesis that individual ACSLs partition FA, Ad-Acsl1 increased FA reacylation and channeled FA toward diacylglycerol and phospholipid synthesis and away from cholesterol ester synthesis.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, triacylglycerol mobilization for phospholipid synthesis occurs during growth resumption from stationary phase, and this metabolism is essential in the absence of de novo fatty acid synthesis. In this work, we provide evidence that DGK1-encoded diacylglycerol kinase activity is required to convert triacylglycerol-derived diacylglycerol to phosphatidate for phospholipid synthesis. Cells lacking diacylglycerol kinase activity (e.g. dgk1Δ mutation) failed to resume growth in the presence of the fatty acid synthesis inhibitor cerulenin. Lipid analysis data showed that dgk1Δ mutant cells did not mobilize triacylglycerol for membrane phospholipid synthesis and accumulated diacylglycerol. The dgk1Δ phenotypes were partially complemented by preventing the formation of diacylglycerol by the PAH1-encoded phosphatidate phosphatase and by channeling diacylglycerol to phosphatidylcholine via the Kennedy pathway. These observations, coupled to an inhibitory effect of dioctanoyl-diacylglycerol on the growth of wild type cells, indicated that diacylglycerol kinase also functions to alleviate diacylglycerol toxicity.  相似文献   

7.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

8.
Cell culture systems have demonstrated a role for cytoplasmic fatty acid-binding proteins (FABP) in lipid metabolism, although a similar function in intact animals is unknown. We addressed this issue using heart fatty acid-binding protein (H-FABP) gene-ablated mice. H-FABP gene ablation reduced total heart fatty acid uptake 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6 compared with controls, respectively. Similarly, the amount of fatty acid found in the aqueous fraction was reduced 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6, respectively. Less [1-(14)C]16:0 entered the triacylglycerol pool, with significant redistribution of fatty acid between the triacylglycerol pool and the total phospholipid pool. Less [1-(14)C]20:4n-6 entered each lipid pool measured, but these changes did not alter the distribution of tracer among these pools. In gene-ablated mice, significantly more [1-(14)C]16:0 was targeted to choline and ethanolamine glycerophospholipids, whereas more [1-(14)C]20:4n-6 was targeted to the phosphatidylinositol (PtdIns) pool. H-FABP gene ablation significantly increased PtdIns mass 1.4-fold but reduced PtdIns 20:4n-6 mass 30%. Consistent with a reported effect of FABP on plasmalogen mass, ethanolamine plasmalogen mass was reduced 30% in gene-ablated mice. Further, 20:4n-6 mass was reduced in each of the three other major phospholipid classes, suggesting H-FABP has a role in maintaining steady-state 20:4n-6 mass in heart. In summary, H-FABP was important for heart fatty acid uptake and targeting of fatty acids to specific heart lipid pools as well as for maintenance of phospholipid pool mass and acyl chain composition.  相似文献   

9.
Phosphatidylcholine content in the spermatozoa of the sea urchin, Hemicentrotus pulcherrimus, decreased rapidly during incubation with sea water. Sea urchin sperm contained approx. 85% phospholipid in total lipid. Phosphatidylcholine (PC) was the principal lipid. Other phospholipids, however, remained at constant levels during incubation. Although the free fatty acid content gradually increased following dilution of dry sperm in sea water, the amounts of triacylglycerol and cholesterol ester were extremely low. Analysis by gas-liquid chromatography indicated most of fatty acid moieties in PC to be polyenoic. PC composed in part of unsaturated fatty acids was consumed to a greater extent during incubation than that consisting of saturated fatty acids. Furthermore, 1-palmitoyl-2-[1-14C]linoleoylphosphatidylcholine was transformed to 14C-labelled free fatty acid in a subcellular system. Thus, possibly, phospholipase A2 is present in sea urchin sperm. Also, [1-14C]oleic acid was immediately oxidized to 14CO2 by sperm. It is thus concluded that sea urchin sperm use phosphatidylcholine as a substrate for energy metabolism.  相似文献   

10.
Soybean (Glycine max [L.] Merr.) plants with the first trifoliate leaf fully expanded were exposed to 4 and 8 days of water stress. Leaf water potentials dropped from −0.6 megapascal to −1.7 megapascals after 4 days of stress; then to −3.1 megapascals after 8 days without water. All of the plants recovered when rewatered. The effects of short-term drought stress on triacylglycerol, diacylglycerol, phospholipid, and galactolipid metabolism in the first trifoliate leaves was determined. Leaf triacylglycerol and diacylglycerol content increased 2-fold during the first 4 days of stress and returned to control levels 3 days after rewatering. The polar lipid fraction, which contained phospholipids and galactolipids, changed little during this time. The linolenic acid (18:3) content of the triacylglycerol and diacylglycerol increased 25% during stress and the polar lipid 18:3 content decreased 15%. The pattern of glycerolipid labeling, after applying [2-14C]acetate to intact leaves was altered by water stress. After 4 days of water stress the radioactivity of phosphatidic acid + phosphatidylinositol, phosphatidylcholine, triacylglycerol, and diacylglycerol increased between 4 and 9% (compared to control plans) while radioactivity of phosphatidylethanolamine, monogalactosyldiglyceride, and digalactosyldiglyceride decreased 2 to 11%. These data indicated that increased levels of triacylglycerol and diacylglycerol observed during water stress were attributed to de novo synthesis rather than breakdown or reutilization of existing glycerolipids and fatty acids.  相似文献   

11.
Both carbachol and bradykinin increased diacylglycerol formation in PC12 pheochromocytoma cells. The effect of carbachol was apparent only in cells that had been treated with nerve growth factor. Incubation of the cells in Ca2(+)-free medium attenuated carbachol-stimulated diacylglycerol formation but did not reduce the response to bradykinin. Pretreatment of the cells with pertussis toxin did not affect either carbachol- or bradykinin-stimulated diacylglycerol formation; therefore, the inhibitory guanine nucleotide Gi probably does not mediate this response. The time course of carbachol-stimulated diacylglycerol accumulation did not coincide with the time course of inositol 1,4,5-trisphosphate (IP3) production. IP3 was elevated at the earliest time measured, 15 s, and then slowly declined so that by 5 min IP3 levels were only 50% of maximal. Diacylglycerol levels, in contrast, were not elevated for the first 2 min and then peaked at 5 min. These data indicate that hydrolysis of phosphatidylinositol 4,5-bisphosphate was not the major source of the diacylglycerol peak at 5 min. To investigate the source of diacylglycerol, I examined the fatty acid composition of the diacylglycerol by prelabeling the cells with [3H]palmitic acid and [14C]stearic acid. The 14C/3H ratio in diacylglycerol should reflect the phospholipid(s) from which it is derived. The 14C/3H ratio of the increment in diacylglycerol produced by carbachol and bradykinin was intermediate between the 14C/3H ratios of phosphatidylcholine and phosphatidylinositol. The 14C/3H ratio in triacylglycerol was similar to that of phosphatidylcholine. These data indicate that carbachol and bradykinin stimulate the formation of diacylglycerol from sources other than inositol-containing phospholipids; phosphatidylcholine and triacylglycerol are two possible sources of this diacylglycerol.  相似文献   

12.
During avian development, lipoproteins derived from yolk lipid are assembled in the yolk sac membrane (YSM) for secretion into the embryonic circulation. To investigate how yolk polyunsaturated fatty acids, essential for the development of certain tissues, are distributed among the lipid classes of the lipoproteins, pieces of YSM were incubated in vitro with [14C]arachidonic and [14C]docosahexaenoic acids (DHA). There was a marked difference in the partitioning of these two precursors among the lipid classes of the tissue. Of the radioactivity incorporated into total lipid from [14C]-arachidonic acid during 1 h of incubation, 67.3% was esterified as phospholipid and 29.5% as triacylglycerol. In contrast, only 14.6% of the label incorporated from [14C]-DHA was esterified as phospholipid, whereas 73.2% was recovered in triacylglycerol. This pattern of differential partitioning was observed at all time points and across a 20-fold range of fatty acid concentrations. There was no evidence for conversion of the radioactive arachidonic and DHAs to other fatty acids prior to incorporation into tissue lipids. It is suggested that the selective incorporation of yolk-derived DHA into the triacylglycerol of secreted lipoproteins represents part of a mechanism for directing this polyunsaturate to particular embryonic tissues.  相似文献   

13.
The regulatory mechanism of triacylglycerol synthesis in Saccharomyces cerevisiae was studied. The triacylglycerol content increased markedly during the entry of cells into the stationary growth phase, whereas the content of phospholipids remained unchanged. Pulse-labeling experiments to measure [14C]acetate incorporation into triacylglycerol revealed that the synthesis of triacylglycerol increased in the stationary growth phase. An increase in fatty acid synthesis was observed only in the later stage of the stationary growth phase and thus does not seem to be the principal causative factor for the triacylglycerol accumulation. Among various triacylglycerol-synthetic enzymes tested, the increase in the phosphatidate phosphatase (EC 3.1.3.4) activity was most closely correlated with the accumulation of triacylglycerol in the stationary phase. Our results show that phosphatidate phosphatase plays an important role in the regulation of triacylglycerol synthesis in S. cerevisiae.  相似文献   

14.
Given the same quantity of fatty acid, livers from male rats esterify less fatty acid and secrete less triacylglycerol in very-low-density lipoprotein than do livers from female animals. To elucidate the role of testosterone in maintenance of this male pattern, conversion of [1-14C]oleic acid into triacylglycerol was assessed in vitro by rat hepatocytes (male) following gonadectomy and replacement with testosterone. Following castration, incorporation of fatty acid into triacylglycerol was increased. In contrast, esterification of exogenous fatty acid into phospholipid, cholesteryl esters, and diacylglycerol was unchanged. Treatment with testosterone (75 micrograms/day) reduced incorporation of exogenous fatty acid into triacylglycerol. Higher doses of testosterone (200 or 100 micrograms/day) modified the effect, such that inhibition was observed only at low oleate (0.5 mM) concentrations. At higher substrate concentrations (1.0-2.0 mM) the inhibitory effect was no longer observed. Further, a similar dose-dependent effect of testosterone was observed following in vivo treatment of castrate females with testosterone. These data support the concept of a regulatory role of testosterone in hepatic triacylglycerol synthesis. These findings also demonstrate a biphasic effect of testosterone, an effect that is dependent not only upon the dose of testosterone administered, but also on the concentration of fatty acid to which the hepatocyte is exposed in vitro.  相似文献   

15.
The membrane lipid composition of Tetrahymena pyriformis NT-I was observed to change in a manner markedly dependent on the progress of culture age. The pellicular, mitochondrial and microsomal membranes were isolated from cell harvested at various growth phases (I, early exponential; II, mid-exponential; III, late exponential; IV, early stationary; V, late stationary) and their lipid composition was analyzed by thin-layer and gas-liquid chromatography. Although the phospholipid composition varied somewhat among membrane fractions, the most general age-dependent alteration was a considerable decrease in the content of phosphatidylethanolamine accompanied by a small increase in phosphatidylcholine. The 2-aminoethylphosphonolipid, enriched in the surface membrane pellicle, did not undergo a consistent change. As for fatty acid composition the most notable variation occurred in unsaturated fatty acids; a great increase in oleic and linoleic acids and a compensatory decrease in palmitoleic acid. This resulted in an augmented unsaturation of the overall phospholipid fatty acid profile of the aged membranes. The age-associated drastic decline in the palmitoleic acid content in membrane phospholipids could be accounted for by the markedly lowered activity of palmitoyl-CoA desaturase. The microsomes from the early exponential phase cells possess a 4-fold higher activity of the desaturase as compared to that of the late stationary phase microsomes. The decreased desaturase activity associated with the culture age was also reflected in the corresponding decrease in the conversion rate of [14C]palmitate to [14C]palmitoleate in cells labelled in vivo. The ESR spectra of the spin-labeled phospholipids extracted from the pellicular and microsomal membranes have led to the suggestion that these types of membrane would become more fluid with the age of growth.  相似文献   

16.
Callus cultures from olive (Olea europaea L.) were used to study characteristics of desaturation in this oil-rich tissue. The incorporation of [1-(14)C]oleate and [1-(14)C]linoleate into complex lipids and their further desaturation was followed in incubations of up to 48 h. Both radiolabelled fatty acids were rapidly incorporated into lipids, especially phosphatidylcholine and triacylglycerol. Radiolabelling of these two lipids peaked after 1-4 h, after which it fell. In contrast, other phosphoglycerides and the galactosylglycerides were labelled in a more sustained manner. [1-(14)C]Linoleate was almost exclusively found in the galactolipids. With [1-(14)C]linoleate as a precursor, the only significant desaturation to linolenate was in the galactolipids. Monogalactosyldiacylglycerol was the first lipid in which [1-(14)C]linoleate and [1-(14)C]linolenate appeared after incubation of the calli with [1-(14)C]oleate and [1-(14)C]linoleate, respectively. The presence of radioactivity in the plastidial lipids shows that both [1-(14)C]oleate and [1-(14)C]linoleate can freely enter the chloroplast. Two important environmental effects were also examined. Raised incubation temperatures (30-35 degrees C) reduced oleate desaturation and this was also reflected in the endogenous fatty acid composition. Low light also caused less oleate desaturation. The data indicate that lysophosphatidylcholine acyltransferase is important for the entry of oleate and linoleate into olive callus lipid metabolism and phospholipid:diacylglycerol acyltransferase may be involved in triacylglycerol biosynthesis. In addition, it is shown that plastid desaturases are mainly responsible for the production of polyunsaturated fatty acids. Individual fatty acid desaturases were differently susceptible to environmental stresses with FAD2 being reduced by both high temperature and low light, whereas FAD7 was only affected by high temperature.  相似文献   

17.
Developing cotyledons of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) readily utilised exogenously supplied 14C-labelled fatty-acid substrates for the synthesis of triacylglycerols. The other major radioactive lipids were phosphatidylcholine and diacylglycerol. In safflower cotyledons, [14C]oleate was rapidly transferred to position 2 of sn-phosphatidylcholine and concomitant with this was the appearance of radioactive linoleate. The linoleate was further utilised in the synthesis of diacyl- and triacyl-glycerol via the reactions of the so-called Kennedy pathway. Supplying [14C]linoleate, however, resulted in a more rapid labelling of the diacylglycerols than from [14C]oleate. In contrast, sunflower cotyledons readily utilised both labelled acyl substrates for rapid diacylglycerol formation as well as incorporation into position 2 of sn-phosphatidylcholine. In both species, however, [14C]palmitate largely entered sn-phosphatidylcholine at position 1 during triacylglycerol synthesis. The results support our previous in-vitro observations with isolated microsomal membrane preparations that (i) the entry of oleate into position 2 of sn-phosphatidylcholine, via acyl exchange, for desaturation to linoleate is of major importance in regulating the level of polyunsaturated fatty acids available for triacylglycerol formation and (ii) Palmitate is largely excluded from position 2 of sn-phosphatidylcholine and enters this phospholipid at position 1 probably via the equilibration with diacylglycerol. Specie differences appear to exist between safflower and sunflower in relation to the relative importance of acyl exchange and the interconversion of diacylglycerol with phosphatidylcholine as mechanisms for the entry of oleate into the phospholipid for desaturation.Abbreviations FW fresh weight - TLC thin-layer chromatography  相似文献   

18.
Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.  相似文献   

19.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

20.
[1-14-C]Palmitoyl-Co A was incubated with Tetrahymena microsomes containing the complete enzyme system for desaturation during various time periods. The level of [1-14C]palmitoleoyl-CoA increased to a maximum during the 1--3 min incubation time, while [1-14C]palmitoleic acid in the phospholipid reached a maximum level during 6--7 min incubation time. The radioactivity of [1-14C]palmitoleic acid in free fatty acid and the triglyceride fraction was not significantly observed upon 3 min incubation. Incubation of [1-14C]palmitoyl-CoA with microsomes in the absence of NADH produced [1-14C]palmitoyl lipid without desaturation. Radioactive palmitic acids in the microsomal lipids were not converted to palmitoleic acids after addition of NADH by the complete enzyme system. When microsomes prepared from cells labeled with [1-14C]palmitic acid or [1-14C]stearic acid were incubated alone in the presence of O2 and NADH, no significant increase in [1-14C]palmitoleic acid in the phospholipid was observed, wherease an increase in [1-14C]linoleic acid and gamma-[1-14C]linolenic acid did occur at the expense of [1-14C]oleic acid in the phospholipid. From these results it can be concluded that the enzyme involving desaturation of palmitic acid to palmitoleic acid requires palmitoyl-CoA as the substrate. However, the possibility of oleoyl and linoleoyl phospholipids being substrates in the desaturation of Tetrahymena microsomes was suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号