首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is rising interest in non-enzymatic cholesterol oxidation because the resulting oxysterols have biological activity and can be used as non-invasive markers of oxidative stress in vivo. The preferential site of oxidation of cholesterol by highly reactive species is at C7 having a relatively weak carbon–hydrogen bond. Cholesterol autoxidation is known to proceed via two distinct pathways, a free radical pathway driven by a chain reaction mechanism (type I autoxidation) and a non-free radical pathway (type II autoxidation). Oxysterols arising from type II autoxidation of cholesterol have no enzymatic correlates, and singlet oxygen (1ΔgO2) and ozone (O3) are the non-radical molecules involved in the mechanism. Four primary derivatives are possible in the reaction of cholesterol with singlet oxygen via ene addition and the formation of 5α-, 5β-, 6α- and 6β-hydroxycholesterol preceded by their respective hydroperoxyde intermediates. The reaction of ozone with cholesterol is very fast and gives rise to a complex array of oxysterols. The site of the initial ozone reaction is at the Δ5,6 –double bond and yields 1,2,3-trioxolane, a compound that rapidly decomposes into a series of unstable intermediates and end products. The downstream product 3β-hydroxy-5-oxo-5,6-secocholestan-6-al (sec-A, also called 5,6-secosterol), resulting from cleavage of the B ring, and its aldolization product (sec-B) have been proposed as a specific marker of ozone-associated tissue damage and ozone production in vivo. The relevance of specific ozone-modified cholesterol products is, however, hampered by the fact sec-A and sec-B can also arise from singlet oxygen via Hock cleavage of 5α-hydroperoxycholesterol or via a dioxietane intermediate. Whatever the mechanism may be, sec-A and sec-B have no enzymatic route of production in vivo and are reportedly bioactive, rendering them attractive biomarkers to elucidate oxidative stress-associated pathophysiological pathways and to develop pharmacological agents.  相似文献   

2.
Cholesterol has many functions, including those that affect biophysical properties of membranes, and is a precursor to hormone synthesis. These actions are governed by enzymatic pathways that modify the sterol nucleus or the isooctyl tail. The addition of oxygen to the cholesterol backbone produces its derivatives known as oxysterols. In addition to having an enzymatic origin, oxysterols can be formed in the absence of enzymatic catalysis in a pathway usually termed “autoxidation,” which has been known for almost a century and observed under various experimental conditions. Autoxidation of cholesterol can occur through reactions initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system and by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The susceptibility of cholesterol to non-enzymatic oxidation has raised considerable interest in the function of oxysterols as biological effectors and potential biomarkers for the non-invasive study of oxidative stress in vivo.  相似文献   

3.
Exposure of the lung to concentrations of ozone found in ambient air is known to cause toxicity to the epithelial cells of the lung. Because of the chemical reactivity of ozone, it likely reacts with target molecules in pulmonary surfactant, a lipid-rich material that lines the epithelial cells in the airways. Phospholipids containing unsaturated fatty acyl groups and cholesterol would be susceptible to attack by ozone, which may lead to the formation of cytotoxic products. Whereas free radicalderived oxidized cholesterol products have been frequently studied for their cytotoxic effects, ozonized cholesterol products have not been studied, although they could reasonably play a role in the toxicity of ozone. The reaction of ozone with cholesterol yielded a complex series of products including 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al, 5-hydroperoxy-B-homo-6-oxa-cholestan-3beta,7a-diol, and 5beta,6beta-epoxycholesterol. Mass spectrometry and radioactive monitoring were used to identify the major cholesterol-derived product during the reaction of 2 ppm ozone in surfactant as 5beta,6beta-epoxycholesterol, which is only a minor product during ozonolysis of cholesterol in solution. A dose-dependent formation of 5beta,6beta-epoxycholesterol was also seen during direct exposure of intact cultured human bronchial epithelial cells (16-HBE) to ozone. Studies of the metabolism of this epoxide in lung epithelial cells yielded small amounts of the expected metabolite, cholestan-3beta,5alpha,6beta-triol, and more abundant levels of an unexpected metabolite, cholestan-6-oxo-3beta,5alpha-diol. Both 5beta,6beta-epoxycholesterol and cholestan-6-oxo-3beta,5alpha-diol were shown to be cytotoxic to cultured 16-HBE cells. A possible mechanism for cytotoxicity is the ability of these oxysterols to inhibit isoprenoid-based cholesterol biosynthesis in these cells.  相似文献   

4.
Cholesterol, a major neutral lipid component of biological membranes and the lung epithelial lining fluids, is susceptible to oxidation by reactive oxygen and nitrogen species including ozone. The oxidation by ozone in biological environments results in the formation of 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (cholesterol secoaldehyde or CSeco, major product) along with some other minor products. Recently, CSeco has been implicated in the pathogenesis of atherosclerosis and Alzheimer's disease. In this communication, we report that CSeco induces cytotoxicity in H9c2 cardiomyoblasts with an IC(50) of 8.9+/-1.29 microM (n=6). The observed effect of CSeco at low micromolar concentrations retained several key features of apoptosis, such as changes in nuclear morphology, phosphatidylserine externalization, DNA fragmentation, and caspase 3/7 activity. Treatment of cardiomyocytes with 5 microM CSeco for 24h, for instance, resulted in 30.8+/-3.28% apoptotic and 1.8+/-1.11% of necrotic cells as against DMSO controls that only showed 1.3+/-0.33% of apoptosis and 1.6+/-0.67% of necrosis. In general, the loss of cellular viability paralleled the increased occurrence of apoptotic cells in various CSeco treatments. This study, for the first time, demonstrates the induction of apoptotic cell death in cardiomyocytes by a cholesterol ozonation product, implying a role for ozone in myocardial injury.  相似文献   

5.
Oxysterols, or cholesterol oxidation products, are oxygenated derivatives of cholesterol which are formed endogenously during the biosynthesis of bile acids and steroid hormones. In addition, oxysterols may also be absorbed from the diet as they are found in many commonly consumed foods. Oxysterols have been shown to possess many potent and diverse biological activities, and the study of the effects of these oxidation products on the human body forms a wide field of research. The results of most research efforts support the conclusion that certain oxysterols, predominantly those found in oxidized low-density lipoprotein, exert pathological effects such as the induction of apoptotic cell death. Moreover, apoptosis induced by oxysterols has been strongly implicated in the pathogenesis of atherosclerosis as well as a variety of other diseases. The study of oxysterol-induced apoptosis is an emerging area, and the following review aims to provide a detailed account on the chronology of events involved. Current evidence of the involvement of the death receptor pathway and protein kinases is examined as well as important apoptosis regulators such as the mitochondria, B-cell lymphoma-2 proteins and caspases. The effect of oxysterols on gene expression, protein interactions and membrane properties are also discussed.  相似文献   

6.
OBJECTIVE: Human atherosclerotic lesions of different stages have quantitative differences in cholesterol and oxysterol content, but information on the oxysterol profile in fatty streaks is limited. This study aims to provide more detailed oxysterol quantification in human fatty streaks, as well as normal aorta and advanced lesions. METHODS: A newly adapted method was used, including oxysterol purification by means of a silica cartridge; and it was ensured that artifactual oxysterol formation was kept to a minimum. Cholesterol and oxysterols were estimated by GC and identification confirmed by GC-MS in samples of normal human arterial intima, intima with near-confluent fatty streaks and advanced lesions, in necropsy samples. RESULTS: The oxysterols 7 alpha-hydroxycholesterol, cholesterol-5 beta, 6 beta-epoxide, cholesterol-5 alpha, 6 alpha-epoxide, 7 beta-hydroxycholesterol, 7-ketocholesterol and 27-hydroxycholesterol (formerly known as 26-hydroxycholesterol) were found in all the lesions, but were at most very low in the normal aorta, both when related to wet weight and when related to cholesterol. Most components of the normal artery showed some cross-correlation on linear regression analysis, but cross-correlations were weaker in the fatty streaks and advanced lesions. However, in fatty streak there was a marked positive correlation between 27-hydroxycholesterol and cholesterol. CONCLUSION: The findings confirm that oxysterols are present in fatty streaks and advanced lesions and may arise from different cholesterol oxidation mechanisms, including free radical-mediated oxidation and enzymatic oxidation.  相似文献   

7.
A spectrum of cholesterol oxidation derivatives (oxysterols) is generated in food products exposed to heat or radiation in the presence of oxygen. One of these derivatives (cholestan-3 beta,5 alpha,6 beta-triol) was shown to compromise the selective barrier function of cultured vascular endothelial cell monolayers, an action that may initiate atherosclerotic lesion formation. This study sought to investigate the relationship of cholesterol synthesis inhibition by several naturally occurring oxysterols to depression of vascular endothelial cell monolayer barrier function, determined as an increase in albumin transfer across cultured endothelial monolayers. All oxysterols tested caused a variable time- and dose-dependent elevation in trans-endothelial albumin transfer, and they were also able to inhibit cholesterol biosynthesis to varying degrees. Pure cholesterol was without effect on both counts. The correlation between the increase in albumin transfer related to oxysterol exposure and the ability of oxysterols to suppress cholesterol biosynthesis was, however, poor. Moreover, mevinolin, a water-soluble competitive inhibitor of cholesterol synthesis, reduced the rate of cholesterol synthesis to 0.9% of control but did not significantly increase albumin transfer. Cholestan-3 beta,5 alpha,6 beta-triol caused a 660% elevation in albumin transfer while cholesterol synthesis remained at 11% of control. We conclude that changes in endothelial barrier function caused by exposure to the oxysterols examined, but not pure cholesterol, are probably related to factors other than the well-known action of cholesterol biosynthesis inhibition. These findings may have implications in the development of atherosclerosis.  相似文献   

8.
Several in vitro and in vivo experiments have implicated oxysterols in the aetiology and progression of atherosclerosis. Oxysterols may be formed endogenously by oxidation of cholesterol and thus may form a marker of LDL oxidation. They may also be obtained exogenously through dietary intake. We investigated the association of oxysterols with the degree of coronary stenosis in patients undergoing coronary angiography. Cases with severe coronary atherosclerosis 80 stenosis in one of the major coronary vessels, n =80 were compared with controls with no or minor stenosis 50 stenosis in all three major coronary vessels, n =79 . Cases and controls were prestratified on age, gender and smoking habits. Evaluated were plasma levels of unesterified 7 hydroxycholesterol, 7 hydroxycholesterol, 25 hydroxycholesterol, 7 ketocholesterol, cholestane triol and 5,6 epoxycholestanol. 7 Hydroxycholesterol made up 67 of the total amount of plasma oxysterol concentration and was the only one significantly higher in cases 1.53 mu g per 100 ml vs 1.27 mu g per 100 ml, p 0.05 . Further, cases had somewhat higher LDL cholesterol levels and significantly lower HDL cholesterol levels than controls. After multivariate adjustment to account for this difference in lipid levels and for the prestratification factors the mean difference between cases and controls for 7 hydroxycholesterol 0.14 mu g per 100 ml was no longer significant. Also the other oxysterols showed no significant association with the degree of coronary stenosis. Multiple logistic regression analyses showed an adjusted odds ratio of 1.07 95 CI, 0.45-2.59 in the highest tertile of total plasma oxysterol level. We conclude, that this study does not support the hypothesis that plasma oxysterols form an additional risk factor for coronary atherosclerosis.  相似文献   

9.
Rats were fed on a diet containing 0.5% cholesterol oxidation products (oxysterols) or 0.5% cholesterol for 30 min, and their lymph was collected for 7 h. The amount of each of the individual oxysterols absorbed in the lymph depended on the ingested amounts, but the recovery was the highest for 5alpha,6alpha-epoxycholesterol (10.5%), this being followed by 7-ketocholesterol (5.8%), cholestanetriol (5.2%), 7beta-hydroxycholesterol (4.8%), 7alpha-hydroxycholesterol (3.4%), 5beta,6beta-epoxycholesterol (2.2%), and 25-hydroxycholesterol (1.8%). A diet enriched with oxysterol, but not cholesterol, resulted in increased transport of triacylglycerols in the lymph. These results suggest that the absorption rate of oxysterols depends on the type, and indicate that the effect of dietary oxysterols on the lymphatic transport of triacylglycerols differs from that of dietary cholesterol. It therefore remains to be determined which oxysterol was responsible for the triacyglycerol transport.  相似文献   

10.
Several in vitro and in vivo experiments have implicated oxysterols in the aetiology and progression of atherosclerosis. Oxysterols may be formed endogenously by oxidation of cholesterol and thus may form a marker of LDL oxidation. They may also be obtained exogenously through dietary intake. We investigated the association of oxysterols with the degree of coronary stenosis in patients undergoing coronary angiography. Cases with severe coronary atherosclerosis 80 stenosis in one of the major coronary vessels, n =80 were compared with controls with no or minor stenosis 50 stenosis in all three major coronary vessels, n =79 . Cases and controls were prestratified on age, gender and smoking habits. Evaluated were plasma levels of unesterified 7 hydroxycholesterol, 7 hydroxycholesterol, 25 hydroxycholesterol, 7 ketocholesterol, cholestane triol and 5,6 epoxycholestanol. 7 Hydroxycholesterol made up 67 of the total amount of plasma oxysterol concentration and was the only one significantly higher in cases 1.53 mu g per 100 ml vs 1.27 mu g per 100 ml, p 0.05 . Further, cases had somewhat higher LDL cholesterol levels and significantly lower HDL cholesterol levels than controls. After multivariate adjustment to account for this difference in lipid levels and for the prestratification factors the mean difference between cases and controls for 7 hydroxycholesterol 0.14 mu g per 100 ml was no longer significant. Also the other oxysterols showed no significant association with the degree of coronary stenosis. Multiple logistic regression analyses showed an adjusted odds ratio of 1.07 95 CI, 0.45-2.59 in the highest tertile of total plasma oxysterol level. We conclude, that this study does not support the hypothesis that plasma oxysterols form an additional risk factor for coronary atherosclerosis.  相似文献   

11.
Oxysterols are 27-carbon oxidation products of cholesterol metabolism. Oxysterols possess several biological actions, including the promotion of cell death. Here, we examined the ability of 7-ketocholesterol (7-KC), cholestane-3β-5α-6β-triol (triol), and a mixture of 5α-cholestane-3β,6β-diol and 5α-cholestane-3β,6α-diol (diol) to promote cell death in a human breast cancer cell line (MDA-MB-231). We determined cell viability, after 24-h incubation with oxysterols. These oxysterols promoted apoptosis. At least part of the observed effects promoted by 7-KC and triol arose from an increase in the expression of the sonic hedgehog pathway mediator, smoothened. However, this increased expression was apparently independent of sonic hedgehog expression, which did not change. Moreover, these oxysterols led to increased expression of LXRα, which is involved in cellular cholesterol efflux, and the ATP-binding cassette transporters, ABCA1 and ABCG1. Diols did not affect these pathways. These results suggested that the sonic hedgehog and LXRα pathways might be involved in the apoptotic process promoted by 7-KC and triol.  相似文献   

12.
The mechanism of ozone-induced lung cell injury is poorly understood. One hypothesis is that ozone induces lipid peroxidation and that these peroxidated lipids produce oxidative stress and DNA damage. Oxysterols are lipid peroxides formed by the direct effects of ozone on pulmonary surfactant and cell membranes. We studied the effects of ozone and the oxysterol 5β,6β-epoxycholesterol (β-epoxide) and its metabolite cholestan-6-oxo-3,5-diol (6-oxo-3,5-diol) on human alveolar epithelial type I-like cells (ATI-like cells) and type II cells (ATII cells). Ozone and oxysterols induced apoptosis and cytotoxicity in ATI-like cells. They also generated reactive oxygen species and DNA damage. Ozone and β-epoxide were strong inducers of nuclear factor erythroid 2-related factor 2, heat shock protein 70, and Fos-related antigen 1 protein expression. Furthermore, we found higher sensitivity of ATI-like cells compared to ATII cells exposed to ozone or treated with β-epoxide or 6-oxo-3,5-diol. In general the response to the cholesterol epoxides was similar to the effect of ozone. Understanding the response of human ATI-like cells and ATII cells to oxysterols may be useful for further studies, because these compounds may represent useful biomarkers in other diseases.  相似文献   

13.
Sterol oxidation products derived from cholesterol and phytosterol are formed during the processing and storage of foods. The objective of the present study was to assess the potential unfavorable effects of oxysterols in mice. C57BL/6J mice were fed an AIN-93G-based diet containing 0.2 g/kg of oxycholesterol or oxyphytosterol for 4 weeks. The most abundant oxysterol in the diet was 7-ketosterol, but α-epoxycholesterol, β-epoxycholesterol, or 7α-hydroxyphytosterol, and 7β-hydroxyphytosterol were more prominent than 7-ketosterol in the serum and liver respectively. Consumption of both oxysterols resulted in an increased in 4β-hydroxycholesterol and total oxycholesterol in the liver, but the oxycholesterol-fed mice had a lower level of cerebral 24S-hydroxycholesterol and a higher level of the serum triacylglycerols than the control and oxyphytosterol groups. These results indicate that both oxysterols in the diet are accumulated in the body, but that the biological effect of oxycholesterol is different from that of oxyphytosterol.  相似文献   

14.
Ozone present in the photochemical smog or generated at the inflammatory sites is known to oxidize cholesterol and its 3-acyl esters. The oxidation results in the formation of multiple "ozone-specific" oxysterols, some of which are known to cause abnormalities in the metabolism of cholesterol and exert cytotoxicity. The ozone-specific oxysterols have been shown to favor the formation of atherosclerotic plaques and amyloid fibrils involving pro-oxidant processes. In the present communication, cultured murine GT1-7 hypothalamic neurons were studied in the context of cholesterol metabolism, formation of reactive oxygen species, intracellular Ca2 + levels and cytotoxicity using two most commonly occurring cholesterol ozonolysis products, 3beta- hydroxy-5-oxo-5,6-secocholestan-6-al (ChSeco) and 5beta, 6beta-epoxy-cholesterol (ChEpo). It was found that ChSeco elicited cytotoxicity at lower concentration (IC50 = 21 +/- 2.4 microM) than did ChEpo (IC50 = 43 +/- 3.7 microM). When tested at their IC50 concentrations in GT1-7 cells, both ChSeco and ChEpo resulted in the generation of ROS, the magnitude of which was comparable. N-acetyl-l-cysteine and Trolox attenuated the cytotoxic effects of ChSeco and ChEpo. The intracellular Ca2 + levels were not altered by either ChSeco or ChEpo. Methyl-beta-cyclodextrins, which cause depletion of cellular cholesterol, prevented ChSeco- but not ChEpo-induced cytotoxicity. The cell death caused by ChEpo, but not ChSeco, was prevented by exogenous cholesterol. Although oxidative stress plays a significant role, the results of the present study indicate differences in the pathways of cell death induced by ChSeco and ChEpo in murine GT1-7 hypothalamic neurons.  相似文献   

15.
Cholesterol is a molecule with a double bond in its structure and is therefore susceptible to oxidation leading to the formation of oxysterols. These oxidation products are found in many commonly-consumed foods and are formed during their manufacture and/or processing. Concern about oxysterols consumption arises from the potential cytotoxic, mutagenic, atherogenic, and possibly carcinogenic effects of some oxysterols. Eggs and egg-derived products are the main dietary sources of oxysterols. Thermally-processed milk and milk-derived products are another source of oxysterols in our diet. Foods fried in vegetable/animal oil, such as meats and French-fried potatoes, are major sources of oxysterols in the Western diet. Efforts to prevent or to reduce cholesterol oxidation are directed to the use of antioxidants of either synthetic or natural origin. Antioxidants are not only able to inhibit triglyceride oxidation, some of them can also inhibit cholesterol oxidation. Among synthetic antioxidants 2,6-ditertiarybutyl-4-methylphenol (BHT), and tertiary butylhydroquinone (TBHQ) can efficiently inhibit the thermal-induced oxidation of cholesterol. Some natural antioxidants, such as alpha- and gamma-tocopherol, rosemary oleoresin extract, and the flavonoid quercetin, show strong inhibitory action against cholesterol oxidation.  相似文献   

16.
Enhanced oxidative stress is a common feature of liver diseases and contributes to chronic liver disease (CLD) progression by inducing fibrogenesis during liver regeneration. Peroxidation products of cholesterol metabolism, named oxysterols, are new and reliable markers of oxidative stress in vivo. Patients affected by CLDs present high plasma levels of oxysterols, raising the question of the origin and biological relevance of these compounds in the pathophysiology of chronic liver damage. The aim of this study was to examine the molecular basis of the biological effects of oxysterols on liver‐derived cells, HepG2 and Huh7. Cells were treated with different concentrations (10?9 to 10?5 M) of 7‐ketocholesterol used as a reference, and 5,6‐secosterol, a recently discovered oxysterol. FACS investigations, caspase‐3 activation, and Sytox Green immunofluorescent assay showed that pathological concentrations of oxysterols induced necrosis (30–50%) after 48 h of treatment. The two analyzed compounds displayed a similar, but not identical, behavior. In fact, 5,6‐secosterol, but not 7‐ketocholesterol, induced cell senescence. Notably, low concentrations of 5,6‐secosterol caused a sustained activation of ERK1/2, inducing cell proliferation, this unexpected behavior should be better characterized by further studies. Since enhanced oxidative stress is known to worsen liver chronic hepatitis and frequently results in overall decreased cellular survival, our data suggest the important and different role oxysterols may have in interfering with physiological liver tissue regeneration in injured human liver. Antioxidant treatment may provide a highly specific and effective mean to counteract the common consequences of oxidative stress on chronic hepatitis, such as fibrosis/cirrhosis and liver failure. J. Cell. Physiol. 222: 586–595, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Smith–Lemli–Opitz syndrome (SLOS) is a recessive disease characterized by markedly elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in tissues and fluids of affected individuals, due to defective 3β-hydroxysterol-Δ7-reductase (Dhcr7). Treatment of Sprague Dawley rats with AY9944 (an inhibitor of Dhcr7) leads to similar biochemical features as observed in SLOS. Eighteen oxysterols previously have been identified as oxidation products of 7-DHC (most of them distinct from cholesterol (Chol)-derived oxysterols) in solution, in cells, and in brains obtained from Dhcr7-KO mice and AY9944-treated rats, formed either via free radical oxidation (peroxidation) or P450-catalyzed enzymatic oxidation. We report here the identification of five 7-DHC-derived oxysterols, including 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), 4α- and 4β-hydroxy-7-DHC, 24-hydroxy-7-DHC and 7-ketocholesterol (7-kChol, an oxysterol that is normally derived from Chol), in the retinas of AY9944-treated rats by comparing the retention times and mass spectrometric characteristics with corresponding synthetic standards in HPLC-MS analysis. Levels of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol were quantified using d7-DHCEO as an internal standard. Among the five oxysterols identified, only 7-kChol was observed in retinas of control rats, but the levels of 7-kChol in retinas of AY9944-rats were 30-fold higher. Intravitreal injection of 7-kChol (0.25 μmol) into a normal rat eye induced panretinal degeneration within one week; by comparison, contralateral (control) eyes injected with vehicle alone exhibited normal histology. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the retinal degeneration associated with the SLOS rat model and in SLOS patients.  相似文献   

18.
Wachtel E  Bach D  Epand RF  Tishbee A  Epand RM 《Biochemistry》2006,45(4):1345-1351
There is evidence that some products of the reaction of ozone with cholesterol contribute to atherosclerosis. One of these compounds is 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al. We have synthesized this compound and have demonstrated that it reacts with phosphatidylethanolamine to form a Schiff base. The 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al also affects the physical properties of phosphatidylethanolamines. We show by both DSC and X-ray diffraction that it increases the negative curvature of the membrane. In addition, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al causes the lamellar phase to become disorganized, resulting in the loss of lamellar periodicity. The chemical and physical interactions of 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al with phosphatidylethanolamines may contribute to damaging effects of this lipid on cell membranes, resulting in pathology.  相似文献   

19.
Smith-Lemli-Opitz syndrome (SLOS) is a recessive disease characterized by markedly elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in tissues and fluids of affected individuals, due to defective 3β-hydroxysterol-Δ(7)-reductase (Dhcr7). Treatment of Sprague Dawley rats with AY9944 (an inhibitor of Dhcr7) leads to similar biochemical features as observed in SLOS. Eighteen oxysterols previously have been identified as oxidation products of 7-DHC (most of them distinct from cholesterol (Chol)-derived oxysterols) in solution, in cells, and in brains obtained from Dhcr7-KO mice and AY9944-treated rats, formed either via free radical oxidation (peroxidation) or P450-catalyzed enzymatic oxidation. We report here the identification of five 7-DHC-derived oxysterols, including 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), 4α- and 4β-hydroxy-7-DHC, 24-hydroxy-7-DHC and 7-ketocholesterol (7-kChol, an oxysterol that is normally derived from Chol), in the retinas of AY9944-treated rats by comparing the retention times and mass spectrometric characteristics with corresponding synthetic standards in HPLC-MS analysis. Levels of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol were quantified using d(7)-DHCEO as an internal standard. Among the five oxysterols identified, only 7-kChol was observed in retinas of control rats, but the levels of 7-kChol in retinas of AY9944-rats were 30-fold higher. Intravitreal injection of 7-kChol (0.25μmol) into a normal rat eye induced panretinal degeneration within one week; by comparison, contralateral (control) eyes injected with vehicle alone exhibited normal histology. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the retinal degeneration associated with the SLOS rat model and in SLOS patients.  相似文献   

20.
Oxidative modification of low density lipoproteins (LDL) has been shown to cause accelerated degradation of LDL via the scavenger receptor pathway in cultured macrophages, and it has been proposed that this process might lead to cholesterol accumulation in macrophages in the arterial wall in vivo. However, oxidation of LDL is accompanied by a substantial reduction in LDL total cholesterol content and hence the amount of cholesterol delivered by oxidatively modified LDL may be less than that delivered by scavenger receptor ligands such as acetyl LDL which results in massive cholesterol accumulation in cultured macrophages. The present studies were done to determine whether the decrease in total cholesterol content during LDL oxidation was due to oxidation of cholesterol and cholesteryl ester, and to determine whether the resulting oxidized sterols could affect cholesterol esterification in cultured macrophages. It was found that when LDL prelabeled with [3H]cholesteryl linoleate was oxidized, there was a decrease in cholesterol mass but no change in radioactivity. The radioactive substances derived from cholesteryl linoleate appeared more polar than the parent compound when analyzed by reverse-phase liquid chromatography, but were not identical with free cholesterol. Thin-layer chromatography of oxidized LDL lipids confirmed the loss of esterified cholesterol, and revealed multiple new bands, some of which matched reference oxysterols including 7-ketocholesterol, 5,6-epoxycholesterol, and 7-hydroxycholesterol. In addition to oxysterols, oxidized cholesteryl esters were also present. Quantitation by gas chromatography indicated that 7-ketocholesterol was the major oxysterol present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号