首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sea urchin eggs contain a small molecular weight heat-stable factor that confers cyanide-resistant NAD(P)H-O2 oxidoreductase activity on ovoperoxidase (Turner, E., Somers, C. E., and Shapiro, B. M. (1985) J. Biol. Chem. 260, 13163-13171), the enzyme responsible for cross-linking the extracellular protein coat (fertilization membrane) of the egg. Here we report the isolation of the active cofactor and its identification by ultraviolet, NMR, and mass spectroscopy as a new sulfur-containing amino acid derivative, 1-methyl-alpha N,alpha N-dimethyl-4-thiohistidine, or ovothiol. Ovothiol reacts slowly with atmospheric oxygen or rapidly with micromolar concentrations of H2O2 to form ovothiol disulfide, which is inactive as a cofactor for the ovoperoxidase NAD(P)H oxidase. Reduced active ovothiol is regenerated by treatment with disulfide reductants and shows significant differences in its ultraviolet and NMR spectra from oxidized ovothiol. The oxidoreductase activity of the ovoperoxidase/ovothiol system is similar to that previously characterized with crude cofactor preparations; it is greatly enhanced by Mn2+ and is relatively insensitive to CN-, compared to the peroxidase activity of ovoperoxidase. The ovothiol content of eggs is estimated as 1.8 pmol/egg or an intracellular concentration of 6.8 mM. This concentration exceeds the amount of reductant needed for the CN-(-)insensitive oxygen consumption following fertilization and used in the production of H2O2 for fertilization membrane cross-linking. Whether ovothiol is involved in the cross-linking reaction, protects the egg from damage from H2O2, or has another role in development remains unclear.  相似文献   

2.
3.
beta-Lapachone activates a novel apoptotic response in a number of cell lines. We demonstrate that the enzyme NAD(P)H:quinone oxidoreductase (NQO1) substantially enhances the toxicity of beta-lapachone. NQO1 expression directly correlated with sensitivity to a 4-h pulse of beta-lapachone in a panel of breast cancer cell lines, and the NQO1 inhibitor, dicoumarol, significantly protected NQO1-expressing cells from all aspects of beta-lapachone toxicity. Stable transfection of the NQO1-deficient cell line, MDA-MB-468, with an NQO1 expression plasmid increased apoptotic responses and lethality after beta-lapachone exposure. Dicoumarol blocked both the apoptotic responses and lethality. Biochemical studies suggest that reduction of beta-lapachone by NQO1 leads to a futile cycling between the quinone and hydroquinone forms, with a concomitant loss of reduced NAD(P)H. In addition, the activation of a cysteine protease, which has characteristics consistent with the neutral calcium-dependent protease, calpain, is observed after beta-lapachone treatment. This is the first definitive elucidation of an intracellular target for beta-lapachone in tumor cells. NQO1 could be exploited for gene therapy, radiotherapy, and/or chemopreventive interventions, since the enzyme is elevated in a number of tumor types (i.e. breast and lung) and during neoplastic transformation.  相似文献   

4.
NAD(P)H:quinone oxidoreductase (NQO1; EC 1.6.99.2) catalyzes a two-electron transfer involved in the protection of cells from reactive oxygen species. These reactive oxygen species are often generated by the one-electron reduction of quinones or quinone analogs. We report here on the previously unreported Fe(III) reduction activity of human NQO1. Under steady state conditions with Fe(III) citrate, the apparent Michaelis-Menten constant (Km(app)) was approximately 0.3 nM and the apparent maximum velocity (Vmax(app)) was 16 U mg(-1). Substrate inhibition was observed above 5 nM. NADH was the electron donor, Km(app)= 340 microM and Vmax(app) = 46 Umg(-1). FAD was also a cofactor with a Km(app) of 3.1 microM and Vmax(app) of 89 U mg(-1). The turnover number for NADH oxidation was 25 s(-1). Possible physiological roles of the Fe(III) reduction by this enzyme are discussed.  相似文献   

5.
Functionalized benzylidene-indolin-2-ones are widely associated with antiproliferative activity. The scaffold is not normally associated with chemoprevention in spite of the presence of a nitrogen-linked Michael acceptor moiety that may predispose members to induction of NQO1, a widely used biomarker of chemopreventive potential. To investigate this possibility, we have synthesized and evaluated a series of functionalized 3-benzylidene-indolin-2-ones for induction of NQO1 in murine Hepa1c1c7 cells as well as antiproliferative activity against two human cancer cell lines (MCF-7, HCT116). The benzylideneindolinones were found to be good inducers of NQO1 activity, with 85% of test compounds able to increase basal NQO1 activity by more than twofold at concentrations of ?10 μM. By contrast, fewer compounds (11%) tested at the same concentration were able to reduce cell viability by more than 50%. Structure activity relationships showed that the nitrogen linked Michael acceptor moiety was an essential requirement for both activities. This common feature notwithstanding, substitution of the 3-benzylidene-indolin-2-one core structure affected NQO1 induction and antiproliferative activities in dissimilar ways, underscoring different structural requirements for these two activities. Nonetheless, promising compounds (10, 42, 4548) were identified that combine selective induction of NQO1 with potent antiproliferative activity. A potential advantage of such agents would be the ability to provide added protection to normal cells by the up-regulation of NQO1 and other phase II enzymes while simultaneously targeting neoplastic cells.  相似文献   

6.
Fourteen novel 4-aminoquinazoline derivatives 215 were designed and synthesized. The structure of the newly synthesized compounds was established on the basis of elemental analyses, IR, 1H-NMR, 13C-NMR, and mass spectral data. The compounds were evaluated for their potential cytoprotective activity in murine Hepa1c1c7 cells. All of the synthesized compounds showed concentration-dependent ability to induce the cytoprotective enzyme NAD(P)H: quinone oxidoreductase (NQO1) with potencies in the low- to sub-micromolar range. This approach offers an encouraging framework which may lead to the discovery of potent cytoprotective agents.  相似文献   

7.
8.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02–0.8 μ g/plate (38–1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in “classical” nitroreductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 μg NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

9.
Available evidence for oxidative stress after angioplasty is indirect or ambiguous. We sought to characterize the pattern, time course, and possible sources of free radical generation early after arterial balloon injury. Ex vivo injury performed in arterial rings in buffer with lucigenin yielded a massive oxygen-dependent peak of luminescence that decayed exponentially and was proportional to the degree of injury. Signals for injured vs. control arteries were 207. 1 +/- 17.9 (n = 13) vs 4.1 +/- 0.7 (n = 22) cpm x 10(3)/mg/min (p <. 001). Data obtained with 0.25 mmol/l lucigenin were validated with 0. 005-0.05 mmol/l lucigenin or the novel superoxide-sensitive probe coelenterazine (5 micromol/l). Gentle removal of endothelium prior to injury scarcely affected the amount of luminescence. Lucigenin signals were amplified 5- to 20-fold by exogenous NAD(P)H, and were >85% inhibited by diphenyliodonium (DPI, a flavoenzyme inhibitor). Antagonists of several other potential free radical sources, including xanthine oxidase, nitric oxide synthase, and mitochondrial electron transport, were without effect. Overdistension of intact rabbit iliac arteries in vivo (n = 7) induced 72% fall in intracellular reduced glutathione and 68% increase in oxidized glutathione, so that GSH/GSSG ratio changed from 7.93 +/- 2.14 to 0. 81 +/- 0.16 (p <.005). There was also 28.7% loss of the glutathione pool. Further studies were performed with electron paramagnetic resonance spectroscopy. Rabbit aortas submitted to ex vivo overdistension in the presence of the spin trap DEPMPO (5-diethoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide, 100 mmol/l, n = 5) showed formation of radical adduct spectra, abolished by DPI or superoxide dismutase. Computer simulation indicated a mixture of hydroxyl and carbon-centered radical adducts, likely due to decay of superoxide adduct. Electrical mobility shift assays for NF-kappaB activation were performed in nuclear protein extracts from intact or previously injured rabbit aortas. Balloon injury induced early NF-kappaB activation, which was decreased by DPI. In conclusion, our data show unambiguously that arterial injury induces an immediate profound vascular oxidative stress. Such redox imbalance is likely accounted for by activation of vessel wall NAD(P)H oxidoreductase(s), generating radical species potentially involved in tissue repair.  相似文献   

10.
Reactive oxygen species (ROS) play an integral role in the pathogenesis of most diseases. This work presents the design and synthesis of novel 2-phenylquinazolin-4-amine derivatives (212) and evaluation of their NAD(P)H:quinone oxidoreductase 1 (NQO1) inducer activity in murine cells. Also, molecular docking of all the new compounds was performed to assess their ability to inhibit Keap1–Nrf2 protein–protein interaction through occupying the Keap1–Nrf2-binding domain which biologically leads to a consequent Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed that all compounds have the ability to interact with Keap1; however compound 7, the most active compound in this study, showed more interactions with key amino acids.  相似文献   

11.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02-0.8 micrograms/plate (38-1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in "classical" nitro-reductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 micrograms NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

12.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

13.
Louie TM  Xie XS  Xun L 《Biochemistry》2003,42(24):7509-7517
4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization become a major metabolic event when Escherichia coli W grows on 4HPA. An important question is how FADH(2) is produced and used, as FADH(2) is unstable in the presence of free O(2). One solution is metabolic channeling by forming a transitory HpaB-HpaC complex. However, our in vivo and in vitro data failed to support the interaction. Further investigation pointed to an alternative scheme for HpaB to sequester FADH(2). The intracellular HpaB concentration was about 122 microM in 4HPA-growing cells, much higher than the total intracellular FAD concentration, and HpaB had a high affinity for FADH(2) (K(d) of 70 nM), suggesting that most FADH(2) is bound to HpaB in vivo. The HpaB-bound FADH(2) was either used to rapidly oxidize 4HPA or slowly oxidized by O(2) to FAD and H(2)O(2) in the absence of 4HPA. Thus, HpaB's high intracellular concentration, its high affinity for FADH(2), its property of protecting bound FADH(2) in the absence of 4HPA, and its ability to rapidly use FADH(2) to oxidize 4HPA when 4HPA is available can coordinate FADH(2) production and utilization by HpaB and HpaC in vivo. This type of coordination, in responding to demand, for production and utilization of labile metabolites has not been reported to date.  相似文献   

14.
Summary.  The aim of this work was to study the activity of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) in the regeneration of lipophilic antioxidants, alpha-tocopherol, and reduced-coenzyme Q analogs. First, we tested whether or not two isoforms of the NAD(P)H:(quinone acceptor) oxidoreductase 1 designated as “hydrophilic” and “hydrophobic” (H. J. Prochaska and P. Talalay, Journal of Biological Chemistry 261: 1372–1378, 1986) show differential enzyme activities towards hydrophilic or hydrophobic ubiquinone homologs. By chromatography on phenyl Sepharose, we purified the two isoforms from pig liver cytosol and measured their reduction of several ubiquinone homologs of different side chain length. We also studied by electron paramagnetic resonance the effect of NAD(P)H:(quinone acceptor) oxidoreductase 1 on steady-state levels of chromanoxyl radicals generated by linoleic acid and lipooxygenase and confirmed the enzyme's ability to protect alpha-tocopherol against oxidation induced with H2O2-Fe2+. Our results demonstrated that the different hydrophobicities of the isoforms do not reflect different reactivities towards ubiquinones of different side chain length. In addition, electron paramagnetic resonance studies showed that in systems containing the reductase plus NADH, levels of chromanoxyl radicals were dramatically reduced. Morever, in the presence of oxidants, alpha-tocopherol was preserved by NAD(P)H:(quinone acceptor) oxidoreductase 1, supporting our hypothesis that regeneration of alpha-tocopherol may be one of the physiologic functions of this enzyme. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   

15.
Site-directed mutagenesis was utilized to identify binding sites for NAD(P)H and dicumarol in rat liver NAD(P)H:quinone oxidoreductase (NQOR, EC 1.6.99.2). The mutant cDNA clones were generated by a procedure based on the polymerase chain reaction and were expressed in Escherichia coli. The mutant enzymes were purified to apparent homogeneity as judged by SDS-polyacrylamide gel electrophoresis and were found to contain 2 FADs/enzyme molecule identical with that of the wild-type NQOR. Purified mutant enzymes Y128D, G150F, G150V, S151F, and Y155D showed dramatic decreases in activities in the reduction of dichlorophenolindophenol in comparison with the activities of the wild-type enzyme, whereas the activities of F124L, T127V, T127E, Y128V, Y128F, S151A, and Y155V were similar to those of NQOR. Enzyme kinetic analysis revealed that the Km values of T127E, Y128D, G150F, G150V, S151F, and Y155D were, respectively, 4-, 2-, 13-, 5-, 26-, and 19-fold higher than the Km of NQOR for NADPH, and were, respectively, 2-, 3-, 7-, 3-, 20-, and 11-fold higher than that of NQOR for NADH. The kcat values of Y128D, G150F, and G150V were also much lower than those of NQOR, but the kcat values of other mutants were similar to those of the wild-type enzyme. The Km values of the mutants for dichlorophenolindophenol were the same or slightly higher than that of NQOR. The apparent inhibition constants (Ki) for dicumarol on Y128V and F124L were elevated 12 and 8 times, respectively. Similar, but smaller, changes on Ki for 4-hydroxycoumarin were also observed. This study demonstrated that residues Gly150, Ser151, and Tyr155 in the glycine-rich region of NQOR are essential for NADPH and NADH binding and Tyr128 is important for dicumarol binding. Based on the results of the study, it is proposed that the glycine-rich region of the enzyme, along with other residues around the region, forms a beta sheet-turn-alpha helix structure important for the binding of the pyrophosphate group of NADPH and NADH.  相似文献   

16.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, K(N), of 394 microM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

17.
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a cytosolic two-electron reductase, and compounds of the quinone family such as mitomycin C are efficiently bioactivated by this enzyme. The observation that DT-diaphorase is highly expressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information about the cell-specific expression of DT-diaphorase, the purpose of this study was to map the distribution of this enzyme in normal human tissues. Fifteen tissue samples from normal human kidney were analyzed for expression of DT-diaphorase by immunohistochemistry (two-step indirect method). We found a specific high expression of DT-diaphorase in glomerular visceral epithelial cells (podocytes). These results suggest that a high expression of DT-diaphorase in podocytes could play a major role in the pathogenesis of renal toxicity and mitomycin C-induced hemolytic uremic syndrome, in which injury to the glomerular filtration mechanism is the primary damage, leading to a cascade of deleterious events including microangiopathic hemolytic anemia and thrombocytopenia. This observation has potential therapeutic implications because the DT-diaphorase metabolic pathway is influenced by many agents, including drugs, diet, and environmental cell factors such as pH and oxygen tension.  相似文献   

18.
19.
The nuclear factor E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway responds to oxidative stress via control of several antioxidant defense gene expressions. Recent efforts demonstrate that Nrf2 modulates development of adiposity and adipogenesis. One of the major Nrf2-regulated proteins, NAD(P)H:quinone oxidoreductase 1 (NQO1), is implicated in the development of adipose tissue and obesity. However, little is known about in situ disposition of Nrf2, Keap1, and NQO1 during adipogenesis in isolated adipocytes. Based on literature data, we hypothesized that adipocyte differentiation would increase expression of the Nrf2/Keap1 pathway and NQO1. Using murine 3T3-L1 preadipocytes, we mapped an increase in NQO1 protein at limited clonal expansion and postmitotic growth arrest (Days 1-3) stages and a decrease in terminally differentiated (Day 8) adipocytes that lasted for several days afterward. Conversely, NQO1, Nrf2, and Keap1 mRNA expressions were all increased in differentiated adipocytes (Days 11-14), indicating a discrepancy between steady-state mRNA levels and resulting protein. Treatment of differentiated 3T3-L1 adipocytes with glycogen synthase kinase-3β (GSK-3β) inhibitor, LiCl, led to 1.9-fold increase in NQO1 protein. Sulforaphane enhanced NQO1 protein (10.5-fold) and blunted triglyceride and FABP4 accumulation. The decrement in triglyceride content was partially reversed when NQO1 activity was pharmacologically inhibited. These data demonstrate a biphasic response of Nrf2 and NQO1 during adipocyte differentiation that is regulated by Keap1- and GSK-3β-dependent mechanisms, and that hypertrophy is negatively regulated by NQO1 activity.  相似文献   

20.
Mucous cell metaplasia (MCM) and neutrophil-predominant airway inflammation are pathological features of chronic inflammatory airway diseases. A signature feature of MCM is increased expression of a major respiratory tract mucin, MUC5AC. Neutrophil elastase (NE) upregulates MUC5AC in primary airway epithelial cells by generating reactive oxygen species, and this response is due in part to upregulation of NADPH quinone oxidoreductase 1 (NQO1) activity. Delivery of NE directly to the airway triggers inflammation and MCM and increases synthesis and secretion of MUC5AC protein from airway epithelial cells. We hypothesized that NE-induced MCM is mediated in vivo by NQO1. Male wild-type and Nqo1-null mice (C57BL/6 background) were exposed to human NE (50 μg) or vehicle via oropharyngeal aspiration on days 1, 4, and 7. On days 8 and 11, lung tissues and bronchoalveolar lavage (BAL) samples were obtained and evaluated for MCM, inflammation, and oxidative stress. MCM, inflammation, and production of specific cytokines, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-2, interleukin-4, and interleukin-5 were diminished in NE-treated Nqo1-null mice compared with NE-treated wild-type mice. However, in contrast to the role of NQO1 in vitro, we demonstrate that NE-treated Nqo1-null mice had greater levels of BAL and lung tissue lipid carbonyls and greater BAL iron on day 11, all consistent with increased oxidative stress. NQO1 is required for NE-induced inflammation and MCM. This model system demonstrates that NE-induced MCM directly correlates with inflammation, but not with oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号