首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport.  相似文献   

2.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

3.
Insulin regulates glucose uptake in adipocytes and muscle by stimulating the movement of sequestered glucose transporter 4 (GLUT4) proteins from intracellular membranes to the cell surface. Here we report that optimal insulin-mediated GLUT4 translocation is dependent upon both microtubule and actin-based cytoskeletal structures in cultured adipocytes. Depolymerization of microtubules and F-actin in 3T3-L1 adipocytes causes the dispersion of perinuclear GLUT4-containing membranes and abolishes insulin action on GLUT4 movements to the plasma membrane. Furthermore, heterologous expression in 3T3-L1 adipocytes of the microtubule-binding protein hTau40, which impairs kinesin motors that move toward the plus ends of microtubules, markedly delayed the appearance of GLUT4 at the plasma membrane in response to insulin. The hTau40 protein had no detectable effect on microtubule structure or perinuclear GLUT4 localization under these conditions. These results are consistent with the hypothesis that both the actin and microtubule-based cytoskeleton, as well as a kinesin motor, direct the translocation of GLUT4 to the plasma membrane in response to insulin.  相似文献   

4.
Ng Y  Ramm G  Lopez JA  James DE 《Cell metabolism》2008,7(4):348-356
The serine/threonine kinase Akt2 has been implicated in insulin-regulated glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. However, it remains unclear whether activation of Akt2 is sufficient since a role for alternate signaling pathways has been proposed. Here we have engineered 3T3-L1 adipocytes to express a rapidly inducible Akt2 system based on drug-inducible heterodimerization. Addition of the dimerizer rapalog resulted in activation of Akt2 within 5 min, concomitant with phosphorylation of the Akt substrates AS160 and GSK3. Comparison with insulin stimulation revealed that the level of Akt2 activity observed with rapalog was within the physiological range, reducing the likelihood of off-target effects. Transient activation of Akt2 also increased glucose transport and GLUT4 translocation to the plasma membrane. These results show that activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes to an extent similar to insulin.  相似文献   

5.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

6.
Activation of the sympathetic nervous system inhibits insulin-stimulated glucose uptake. However, the underlying mechanisms are incompletely understood. Therefore, we studied the effects of catecholamines on insulin-stimulated glucose uptake and insulin-stimulated translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. We found that epinephrine (1 microM) nearly halved insulin-stimulated 2-deoxyglucose uptake. The beta-adrenoceptor antagonist propranolol (0.3 microM) completely antagonized the inhibitory effect of epinephrine on insulin-stimulated glucose uptake, whereas the alpha-adrenoceptor antagonist phentolamine (10 microM) had no effect. When norepinephrine was used instead of epinephrine, the results were identical. None of the individual selective beta-adrenoceptor antagonists (1 microM, beta(1): metoprolol, beta(2): ICI-118551, beta(3): SR-59230A) could counteract the inhibitory effect of epinephrine. Combination of ICI-118551 and SR-59230A, as well as combination of all three selective beta-adrenoceptor antagonists, abolished the effect of epinephrine on insulin-stimulated glucose uptake. After differential centrifugation, we measured the amount of GLUT1 and GLUT4 in the plasma membrane and in intracellular vesicles by means of Western blotting. Both epinephrine and norepinephrine reduced insulin-stimulated GLUT4 translocation to the plasma membrane. These results show that beta-adrenergic (but not alpha-adrenergic) stimulation inhibits insulin-induced glucose uptake in 3T3-L1 adipocytes, most likely via the beta(2)- and beta(3)-adrenoceptor by interfering with GLUT4 translocation from intracellular vesicles to the plasma membrane.  相似文献   

7.
APS is a Cbl-binding protein that is tyrosine phosphorylated by the insulin receptor kinase. Insulin-stimulated phosphorylation of tyrosine 618 in APS is necessary for its association with c-Cbl and the subsequent tyrosine phosphorylation of Cbl by the insulin receptor in both 3T3-L1 adipocytes and CHO-IR cells. When overexpressed in these cells, wild-type APS but not an APS/Y(618)F mutant facilitated the tyrosine phosphorylation of coexpressed Cbl and its association with Crk upon insulin stimulation. APS-facilitated phosphorylation occurred on tyrosines 371, 700, and 774 in the Cbl protein. APS also interacted directly with the c-Cbl-associated protein (CAP) and colocalized with the protein in cells. The association was dependent on the SH3 domains of CAP and was independent of insulin treatment. Overexpression of the APS/Y(618)F mutant in 3T3-L1 adipocytes blocked the insulin-stimulated tyrosine phosphorylation of endogenous Cbl and binding to Crk. Moreover, the translocation of GLUT4 from intracellular vesicles to the plasma membrane was also inhibited by overexpression of the APS/Y(618)F mutant. These data suggest that APS serves as an adapter protein linking the CAP/Cbl pathway to the insulin receptor and, further, that APS-facilitated Cbl tyrosine phosphorylation catalyzed by the insulin receptor is a crucial event in the stimulation of glucose transport by insulin.  相似文献   

8.
Although the cytoskeletal network is important for insulin-induced glucose uptake, several studies have assessed the effects of microtubule disruption on glucose transport with divergent results. Here, we investigated the effects of microtubule-depolymerizing reagent, nocodazole and colchicine, on GLUT4 translocation in 3T3-L1 adipocytes. After nocodazole treatment to disrupt microtubules, GLUT4 vesicles were dispersed from the perinuclear region in the basal state, and insulin-induced GLUT4 translocation was partially inhibited by 20-30%, consistent with other reports. We found that platelet-derived growth factor (PDGF), which did not stimulate GLUT4 translocation in intact cells, was surprisingly able to enhance GLUT4 translocation to approximately 50% of the maximal insulin response, in nocodazole-treated cells with disrupted microtubules. This effect of PDGF was blocked by pretreatment with wortmannin and attenuated in cells pretreated with cytochalasin D. Using confocal microscopy, we found an increased co-localization of GLUT4 and F-actin in nocodazole-treated cells upon PDGF stimulation compared with control cells. Furthermore, microinjection of small interfering RNA targeting the actin-based motor Myo1c, but not the microtubule-based motor KIF3, significantly inhibited both insulin- and PDGF-stimulated GLUT4 translocation after nocodazole treatment. In summary, our data suggest that 1) proper perinuclear localization of GLUT4 vesicles is a requirement for insulin-specific stimulation of GLUT4 translocation, and 2) nocodazole treatment disperses GLUT4 vesicles from the perinuclear region allowing them to engage insulin and PDGF-sensitive actin filaments, which can participate in GLUT4 translocation in a phosphatidylinositol 3-kinase-dependent manner.  相似文献   

9.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

10.
Endothelin-1 (ET-1) is a 21-amino acid peptide that binds to G-protein-coupled receptors to evoke biological responses. This report studies the effect of ET-1 on regulating glucose transport in 3T3-L1 adipocytes. ET-1, but not angiotensin II, stimulated glucose uptake in a dose-dependent manner with an EC50 value of 0.29 nM and a 2.47-fold stimulation at 100 nM. ET-1 stimulated glucose uptake in differentiated 3T3-L1 cells but had no effect in undifferentiated cells, although ET-1 stimulated phosphatidylinositol hydrolysis to a similar degree in both. The 3T3-L1 cells expressed approximately 560,000 sites/cell of ETA receptor, which was not altered during differentiation. Western blot analysis and immunofluorescence staining show that ET-1 stimulated the translocation of insulin-responsive aminopeptidase and GLUT4 to the plasma membrane. The effect of ET-1 on glucose uptake was blocked by A-216546, an antagonist selective for the ETA receptor. ET-1 treatment did not induce phosphorylation of insulin receptor beta-subunit, insulin receptor substrate-1, or Akt but stimulated the tyrosyl phosphorylation of a 75-kDa protein. Genistein (100 microM), an inhibitor of tyrosine kinases, inhibited ET-1-stimulated glucose uptake. Our results show that ET-1 stimulates GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes via activation of ETA receptor.  相似文献   

11.
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation were visualized in living cells by means of laser scanning confocal microscopy. It was revealed that the stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and 2,4-dinitrophenol (DNP), known activators of AMPK, promptly accelerates its translocation within 4 min, as was found in the case of insulin stimulation. The insulin-induced GLUT4 translocation was markedly inhibited after addition of wortmannin (P < 0.01). However, the GLUT4 translocation through AMPK activators AICAR and DNP was not affected by wortmannin. Insulin- and AMPK-activated translocation of GLUT4 was not inhibited by SB-203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Glucose uptake was significantly increased after addition of AMPK activators AICAR and DNP (P < 0.05). AMPK- and insulin-stimulated glucose uptake were similarly suppressed by wortmannin (P < 0.05-0.01). In addition, SB-203580 also significantly prevented the enhancement of glucose uptake induced by AMPK and insulin (P < 0.05). These results suggest that AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-kinase or through a signaling system distinct from that activated by insulin. On the other hand, the increase of glucose uptake dependent on AMPK activators AICAR and DNP would be additionally due to enhancement of the intrinsic activity in translocated GLUT4 protein, possibly through a p38 MAPK-dependent mechanism.  相似文献   

12.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

13.
The regulated delivery of Glut4-containing vesicles to the plasma membrane is a specialised example of regulated membrane trafficking. Present models favour the transporter trafficking through two inter-related endosomal cycles. The first is the proto-typical endosomal system. This is a fast trafficking event that, in the absence of insulin, serves to internalise Glut4 from the plasma membrane. Once in this pathway, Glut4 is further sorted into a slowly recycling pathway that operates between recycling endosomes, the trans Golgi network, and a population of vesicles often referred to as Glut4-storage vesicles. Little is known about the molecules that regulate these distinct sorting steps. Here, we have studied the role of Stx16 in Glut4 trafficking. Using two independent strategies, we show that Stx16 plays a crucial role in Glut4 traffic in 3T3-L1 adipocytes. Over-expression of a mutant form of Stx16 devoid of a transmembrane anchor was found to significantly slow the reversal of insulin-stimulated glucose transport. Depletion of Stx16 using antisense approaches profoundly reduced insulin-stimulated glucose transport but was without effect on cell surface transferrin receptor levels, and also reduced the extent of Glut4 translocation to the plasma membrane in response to insulin. These data support a model in which Stx16 is crucial in the sorting of Glut4 from the fast cycling to the slow cycling intracellular trafficking pathways in adipocytes.  相似文献   

14.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-gamma from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-gamma knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-gamma suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-gamma deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-gamma-depleted cells displayed enhanced inflammatory responses to TNF-alpha stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-gamma. In summary, 1) PPAR-gamma is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-gamma supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-gamma may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.  相似文献   

15.
Both syntaxin4 and VAMP2 are implicated in insulin regulation of glucose transporter-4 (GLUT4) trafficking in adipocytes as target (t) soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) and vesicle (v)-SNARE proteins, respectively, which mediate fusion of GLUT4-containing vesicles with the plasma membrane. Synaptosome-associated 23-kDa protein (SNAP23) is a widely expressed isoform of SNAP25, the principal t-SNARE of neuronal cells, and colocalizes with syntaxin4 in the plasma membrane of 3T3-L1 adipocytes. In the present study, two SNAP23 mutants, SNAP23-DeltaC8 (amino acids 1 to 202) and SNAP23-DeltaC49 (amino acids 1 to 161), were generated to determine whether SNAP23 is required for insulin-induced translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. Wild-type SNAP23 (SNAP23-WT) promoted the interaction between syntaxin4 and VAMP2 both in vitro and in vivo. Although SNAP23-DeltaC49 bound to neither syntaxin4 nor VAMP2, the SNAP23-DeltaC8 mutant bound to syntaxin4 but not to VAMP2. In addition, although SNAP23-DeltaC8 bound to syntaxin4, it did not mediate the interaction between syntaxin4 and VAMP2. Moreover, overexpression of SNAP23-DeltaC8 in 3T3-L1 adipocytes by adenovirus-mediated gene transfer inhibited insulin-induced translocation of GLUT4 but not that of GLUT1. In contrast, overexpression of neither SNAP23-WT nor SNAP23-DeltaC49 in 3T3-L1 adipocytes affected the translocation of GLUT4 or GLUT1. Together, these results demonstrate that SNAP23 contributes to insulin-dependent trafficking of GLUT4 to the plasma membrane in 3T3-L1 adipocytes by mediating the interaction between t-SNARE (syntaxin4) and v-SNARE (VAMP2).  相似文献   

16.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

17.
The GLUT4 glucose transporter resides mostly in perinuclear membranes in unstimulated 3T3-L1 adipocytes and is acutely translocated to the cell surface in response to insulin. Using a novel method to purify intracellular GLUT4-enriched membranes, we identified by mass spectrometry the intermediate filament protein vimentin and the microtubule protein alpha-tubulin as components of these membranes. Immunoelectron microscopy of the GLUT4-containing membranes also revealed their association with these cytoskeletal proteins. Disruption of intermediate filaments and microtubules in 3T3-L1 adipocytes by microinjection of a vimentin-derived peptide of the helix initiation 1A domain caused marked dispersion of perinuclear GLUT4 to peripheral regions of the cells. Inhibition of the microtubule-based motor dynein by brief cytoplasmic acidification of cultured adipocytes also dispersed perinuclear GLUT4 and inhibited insulin-stimulated GLUT4 translocation to the cell surface. Insulin sensitivity was restored as GLUT4 was again concentrated near the nucleus upon recovery of cells in physiological buffer. These data suggest that GLUT4 trafficking to perinuclear membranes of cultured adipocytes is directed by dynein and is required for optimal GLUT4 regulation by insulin.  相似文献   

18.
GLUT4, a 12 transmembrane protein, plays a major role in insulin mediated glucose transport in muscle and adipocytes. For glucose transport, the GLUT4 protein needs to be translocated to the plasma membrane from the intracellular pool and it is possible that certain compounds may be able to enhance this process. In the present work, we have shown that gallic acid can increase GLUT4 translocation and glucose uptake activity in an Akt-independent but wortmannin-sensitive manner. Further analysis suggested the role of atypical protein kinase Cζ/λ in gallic acid mediated GLUT4 translocation and glucose uptake.  相似文献   

19.
ADP-ribosylation factors (ARFs) play important roles in both constitutive and regulated membrane trafficking to the plasma membrane in other cells. Here we have examined their role in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. These cells express ARF5 and ARF6. ARF5 was identified in the soluble protein and intracellular membranes; in response to insulin some ARF5 was observed to re-locate to the plasma membrane. In contrast, ARF6 was predominantly localized to the plasma membrane and did not redistribute in response to insulin. We employed myristoylated peptides corresponding to the NH2 termini of ARF5 and ARF6 to investigate the function of these proteins. Myr-ARF6 peptide inhibited insulin-stimulated glucose transport and GLUT4 translocation by approximately 50% in permeabilized adipocytes. In contrast, myr-ARF1 and myr-ARF5 peptides were without effect. Myr-ARF5 peptide also inhibited the insulin stimulated increase in cell surface levels of GLUT1 and transferrin receptors. Myr-ARF6 peptide significantly decreased cell surface levels of these proteins in both basal and insulin-stimulated states, but did not inhibit the fold increase in response to insulin. These data suggest an important role for ARF6 in regulating cell surface levels of GLUT4 in adipocytes, and argue for a role for both ARF5 and ARF6 in the regulation of membrane trafficking to the plasma membrane.  相似文献   

20.
A new method for photoaffinity labeling of glucose transporters has been used to compare the effects of glucose-starvation, acute-insulin, and chronic-insulin treatments on the cell-surface glucose transporters in 3T3-L1 adipocytes. Starvation alone increased the cell-surface levels of GLUT1 and GLUT4 by approximately 4- and approximately 2-fold, respectively. As shown by Calderhead, D, M., Kitagawa, K., Tanner, L.T., Holman, G.D., and Lienhard, G.E. (1990) J. Biol. Chem. 265, 13800-13808) acute-insulin treatment increased cell-surface GLUT1 and GLUT4 by approximately 5- and approximately 15-fold respectively. In contrast to this, chronic-insulin treatment gave a further 3-4-fold increase in both cell-surface and total cellular GLUT1, but availability of GLUT4 at the cell-surface was down-regulated to half the level found in the acute treatment but with no change in the total cellular level. This effect occurred in starved and non-starved cells and suggests that starvation, acute-insulin, and chronic-insulin treatments regulate glucose transporter availability through independent mechanisms. The down-regulation of GLUT4 reached a maximally reduced cell-surface level in 6 h while the rise in GLUT1 reached a maximum after 24-48 h. The rise in GLUT1 appeared to compensate for the decline in cell-surface GLUT4 as glucose transport activity was further increased during the long term treatment with insulin. The down-regulation of GLUT4 due to the chronic-insulin treatment is associated with a marked resistance of the cells to restimulate glucose transport and particularly to recruit further GLUT4 to the cell-surface following an additional insulin treatment. The defect appears to be in the signaling mechanism that is responsible for translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号