首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poecilobdella viridis was used to study the variations in the biochemical parameters: body protein, glycogen and water, following warm (32.0° ± 0.5°C) and cold (10.0° ± 0.5°C) acclimation for 5, 10, 15 and 30 days. The percentage of glycogen decreased significantly (p < 0.05) during both warm and cold acclimation whereas the protein percentage increased significantly (p < 0.05). The percentage of water was significantly (p < 0.05). reduced during both acclimation processes. Ecophysiological significance of these alterations to leeches, in counteracting the ambient thermal fluxes, has been briefly discussed.  相似文献   

2.
Leeches maintained either in tap-water or under desiccated conditions show a continuous decline in body-weight. Debrained leeches show a significantly greater loss of weight than unoperated or sham-operated controls. Injections of brain homogenate (0.2 ml/leech = 3 brains/leech) significantly (p<0.01) reduces weight loss in debrained leeches, whereas saline injections are without effect. The results indicate that water (weight) loss is influenced by a neurosecretory hormone secreted by the brain of Poecilobdella viridis.
  相似文献   

3.
The effect of thermal acclimation for 15 days on the gametogenesis of Poecilobdella viridis was studied. Leeches conditioned at laboratory temperature (25.5°–27.5°C), when warm acclimated (32.0° ± 0.5° C), displayed a significant (p < 0.05) increase in the percentage of oocytes having a diameter of 12.5 µ and 15.0 µ and in the percentage of fully mature sperm clusters over the controls, whereas cold acclimation (10.0° ± 0.5°C) did not induce significant (p > 0.05) changes in the oocytes and sperm clusters. Thus it is concluded that in P. viridis temperature is of paramount importance in initiating gametogenesis.  相似文献   

4.
Emergence, basking behaviour, selected temperature, and critical thermal minimum were studied in warm and cold acclimated groups of two subspecies of the lizard Mabuya striata. The high-altitude M. s. punctatissima emerges earlier than the low-altitude M. s. striata. Under conditions of warm acclimation, M. s. punctatissima has a longer initial bask. The two subspecies do not differ in either mean selected temperature or critical thermal minimum, although in both cases values for cold acclimated lizards are lower than for warm acclimated lizards. I have previously demonstrated differences between the subspecies in the pattern of thermal acclimation of rate of oxygen consumption. I thus consider that M. striata is static in some aspects of its thermal biology but labile in others.  相似文献   

5.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

6.
1. Oxygen consumption and rectal temperature of warm and cold acclimated rats were measured after chronic and acute injections of saline or benzodiazepine (diazepam). 2. Benzodiazepine has blocked the increase in oxygen consumption of warm acclimated rats on exposure to cold. 3. After cold acclimation, the benzodiazepine did not affect the increase in oxygen consumption. 4. Benzodiazepine caused a slight hypothermia when injected chronically, but did not affect rectal temperature over a short period of time.  相似文献   

7.
Summary Inorganic ions (Ca, Mg, Na, K, Cl, SO4) and free amino acids of the body fluids of the normal, cold and warm acclimated worms (laboratory as well as seasonal populations) are estimated. Calcium increased and chloride and sodium decreased on both cold and warm acclimation in relation to normal. But magnesium and sulphate and free amino acids increased on warm acclimation whereas potassium increased and magnesium decreased on cold acclimation. Changes in different ions in the same direction are observed in the seasonal populations. Attention is drawn to the adaptive significance of these changes in the different ions during thermal acclimation.Changes in the glycogen, RNA, protein and non-protein nitrogen, and water content in the tissues of normal and acclimated worms are studied. Glycogen increased on warm and cold acclimation, whereas RNA content, protein nitrogen and dry weight of the cold worms increased over normal. No change is observed in non-protein nitrogen on thermal acclimation. The role of these substances and the significance of the changes observed, in the operation of homeostatic mechanism compensating to temperature changes in the metabolic rate of the worms, are also discussed.Changes in the pattern of neurosecretory activity are followed with thermal acclimation and it is shown that the activity of the neurosecretory cells increased on cold and warm acclimation, but the positions of these cells, which are active, are different from normal worms in warm acclimated worms.Studies on the effect of the body fluids of acclimated worms on the tissues of normal and acclimated worms showed that the body fluids of cold acclimated worms increased the respiration of the tissues of normal and warm acclimated worms and vice-versa.  相似文献   

8.
The influence of desiccation and temperature on the respiratory metabolism of P. viridis have been investigated. There was a significant (p < 0.05) downfall in the respiratory rates as the period of desiccation increased, but for after 18 hours where it was enhanced significantly. The respiration augmented significantly (p < 0.03) when the temperature of the medium increased. Q10 was significantly high at 32–28°C and was low between 35 and 32°C and 20–10°C Functional significance of these changes to the leeches in combating environmental hazards is briefly discussed.  相似文献   

9.
Capacities and effects of cold or warm acclimation were investigated in two zoarcid species from the North Sea (Zoarces viviparus) and the Antarctic (Pachycara brachycephalum) by investigating temperature dependent mitochondrial respiration and activities of citrate synthase (CS) and NADP+ -dependent isocitrate dehydrogenase (IDH) in the liver. Antarctic eelpout were acclimated to 5°C and 0°C (controls) for at least 10 months, whereas boreal eelpout, Z. viviparus (North Sea) were acclimated to 5°C and to 10°C (controls). Liver sizes were found to be increased in both species in the cold, with a concomitant rise in liver mitochondrial protein content. As a result, total liver state III rates were elevated in both cold-versus and warm-exposed P. brachycephalum and Z. viviparus, with the highest rates in boreal eelpout acclimated to 5°C. CS and IDH activities in the total liver were similar in Z. viviparus acclimated to 5°C and 10°C, but decreased in those warm acclimated versus control P. brachycephalum. Enzyme capacities in the total liver were higher in eelpout from Antarctica than those from the North Sea. In conclusion, cold compensation of aerobic capacities in the liver seems to be linked to an increase in organ size with unchanged specific mitochondrial protein content. Despite its life in permanently cold climate, P. brachycephalum was able to reduce liver aerobic capacities in warm climate and thus, displayed a capacity for temperature acclimation.  相似文献   

10.
Heat production by means of oxygen consumptionVo2 (at Ta = 6° C, 25° C, 30° C, and 32° C) and non-shivering thermogenesis (NST) were studied in individuals of a diurnal rodent (Rhabdomys pumilio) and a nocturnal rodent (Praomys natalensis). The studied mice were acclimated to cold at Ta=8°C with a photoperiod of LD 12:12. On the otherhand specimens of these two species were acclimated at Ta=25°C with a long scotophase LD8:16. The results were compared with a control group (Ta=25° C, LD 12:12) and winter acclimatized individuals of both species.Vo2 in cold acclimated mice of both species was significantly increased when compared to the control group and was even higher than the winter acclimatized group when measured below the lower critical temperature. Long scotophase acclimated mice of both species also increased their oxygen consumption significantly when compared to the control group. NST was significantly increased in long scotophase acclimated mice from both species when compared to the control group. The results of this study indicate that the effects of acclimation to long scotophase are similar to those of cold acclimation. As changes in photoperiod are regular, it may be assumed that heat production mechanisms in acclimatization to winter will respond to changes in photoperiodicity.Present address: University of Haifa, Oranim, P.O. Kiryat Tivon, Israel.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

11.
Oxygen consumption and ammonia excretion rates were assessed for Terebratulina retusa (L.) held under 3 different regimes of temperature and food availability. These were: 5.6?C, no food (cold, starved); 5.8?C, food present (cold, fed) and 10.7?C food present (warm, fed), which simulated winter conditions, summer conditions and an intermediate treatment. Regressions of oxygen consumption on ash‐free dry weight (AFDW) had slopes which were not significantly different from each other and ranged from 0.953 to 0.999. A common slope of 0.976 was calculated and intercepts based on the common slope used to compare oxygen consumption in each treatment. The rise from cold, starved conditions to warm, fed was 24.5 per cent and this was significant (P < 0.05). Other differences were not significant (P > 0.05) but the cold, fed result was 12.6 per cent higher than cold, starved. Therefore feeding and temperature probably account for equivalent proportions of the rise in metabolism from winter to summer. Ammonia production data were much more variable. Excretion rates of a 50 mg AFDW individual (in ng‐at NH3‐N.h‐1) were as follows: cold, starved: 30.2 cold, fed: 7.1; and warm, fed: 22.9. Oxygen to nitrogen (O:N) ratios reflected these results. Mean O:N ratios were: cold, starved: 8.0; cold, fed: 42.4; warm, fed: 16.3. This shows that the simulated winter group relied heavily on protein to fuel their metabolism, the simulated summer group were less dependent on protein and the intermediate group probably used lipids and carbohydrates to fuel metabolic demands. This possibly reflected a trade off between food supply and increased metabolism from treatment to treatment, demonstrating a flexibility which could have been a contributing factor in the ecological tolerance and geological longevity of some brachiopods.  相似文献   

12.
The effect of oxygen tension, pH and salt concentrations on the respiratory metabolism of the freshwater leech, Poecilobdella viridis has been studied. The respiratory rate increased significantly (p < 0.05) with progressive elevation of the oxygen tension of the medium and decreased significantly (p < 0.05) in both acidic and alkaline media. The respiratory rate was enhanced significantly (p < 0.05) as the salt concentration of the medium increased. Functional significance of these trends to the leech in counteracting the environmental eddies is briefly discussed.  相似文献   

13.
Cod were acclimated to 5 and 15° C (cold and warm acclimation, respectively) for at least 43 days after which tissue-somatic indices, tissue protein, DNA content, and cytochrome c oxidase (CCO) activity were measured. Liver, stomach, intestine, total heart and ventricle-somatic indices were all increased significantly in the cold acclimated animals compared with their warm acclimated counterparts. There were no differences in gill or white muscle-somatic indices between the acclimation temperatures. Tissue protein concentration (mg protein g tissue−1) was generally unaffected by temperature acclimation. Cold acclimation resulted in higher white muscle and lower ventricle CCO specific activities(μmol cytochrome c oxidized min−1· g tissue−1) compared with the respective warm acclimated tissues. No significant differences in CCO specific activity were observed in the remaining tissues (when measured at an intermediate temperature of 10° C). Total tissue CCO activity (measured at an intermediate temperature of 10° C) did not differ significantly between the cold and warm acclimated fish.  相似文献   

14.
The capability to produce heat in cold by nonshivering thermogenesis (NST) was studied in Pekin ducklings and Japanese quail chicks acclimated to cold for 3 weeks using indirect calorimetry (oxygen consumption) and electromyography from breast (M. pectoralis) and leg muscles (quails: M. gastrocnemius; ducklings: M. gastrocnemius, M. iliofibularis). Respiration of muscles in vitro was studied by measuring cytochrome c oxidase activity. In both species, cold acclimation induced clear morphometric and physiological changes, but no clear evidence of nonshivering thermogenesis. This was evident because increased shivering at least in one muscle coincided with increased oxygen consumption. In ducklings, however, amplitudes of shivering EMGs were low (<30 μV) in all muscles studied in both the control and cold-acclimated groups. Ducklings reacted to cold mainly by means of increasing body weight (1796 g in control, 2095 g in cold-acclimated) and circulatory changes. Acclimation did not change oxygen consumption either in vivo or in vitro. In quails, in addition to increased body weight (78.1 g control, 89.9 g cold-acclimated), improved insulation and metabolic adaptation to cold (increased respiration in vivo and in M. pectoralis in vitro) was also utilized. In Japanese quail chicks, 3 weeks of cold acclimation does not seem to induce NST, while in Pekin ducklings the existence of NST could not be totally excluded because of weak overall shivering activity. Accepted: 13 July 2000  相似文献   

15.

1. 1.|The mitochondrial population in hypothalamic and hypophysial brain tissue from warm (30°C) and cold (5°C) acclimated goldfish (Carassius auralus L.) was analyzed using sterological techniques.

2. 2.|It was revealed that there is a significantly larger volume density (Vv) in the cold acclimated tissue, with no significant difference in either of the surface densities (Svext and Svint) from either of the brain areas.

3. 3.|The hypothalamic brain tissue has a significantly lower specific surface (S/V) in the cold acclimated tissue but there is not a significant difference in this parameter for the hypophysial brain tissue.

4. 4.|The values for these three parameters (Vv, Svext and SVint, and S/V) indicate that mitochondria from acclimated brain tissue undergo shape changes in response to thermal stress.

5. 5.|We suggest that the shape changes may be related to the change in the phospholipid composition of the inner mitochondrial membrane with acclimation temperature.

Author Keywords: Temperature acclimation; mitochondria; quantitative; stereology; goldfish; hypothalamus; hypophysis; brain  相似文献   


16.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

17.
18.
In nature, animals frequently need to deal with several physiological challenges simultaneously. We examined thermoregulatory performance (body temperature stability) and maximal oxygen consumption of deer mice (Peromyscus maniculatus) during intense exercise at room temperature, acute cold exposure, and exercise during cold exposure. Results with exercise and cold exposure alone were consistent with previous studies: there was little difference between maximal metabolism elicited by exercise alone or cold exposure alone in warm-acclimated mice; after cold acclimation (9 weeks at 5 °C), maximal exercise metabolism did not change but maximum thermogenic capacity increased by >60%. Warm acclimated animals did not increase maximal oxygen consumption when exercise was combined with moderate cold (0 °C) and had decreased maximal oxygen consumption when exercise was combined with severe cold (–16 °C). Combined cold and exercise also decreased thermoregulatory performance and exercise endurance time. Cold acclimation improved thermoregulatory performance in combined cold and exercise, and there was also a slight increase in endurance. However, as for warm-acclimated animals, maximal exercise metabolism did not increase at low temperatures. We interpret these results as an indication of competition between thermoregulatory and locomotor effectors (brown adipose tissue and skeletal muscle) under the combined challenges of cold exposure and maximal exercise, with priority given to the locomotor function.Abbreviations BAT brown adipose tissue - T b body temperature - O 2 rate of oxygen consumption - O 2 max maximal O2 in exercise - O 2 sum maximal O2 during cold exposure Communicated by G. Heldmaier  相似文献   

19.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号