首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The polyadenylation factor subunit "Factor Interacting with Poly(A) polymerase" (Fip1) is an important bridging subunit in the eukaryotic polyadenylation complex. To better understand the functioning of Fip1 in Arabidopsis, a random combinatorial screen for peptides that interact with a conserved plant-specific domain in the protein was conducted. A search of the Arabidopsis proteome using these Fip1-binding peptides as queries resulted in the identification of a number of putative Fip1-interacting proteins. One of these was the polyadenylation factor subunit, CstF77. This purported interaction was confirmed by yeast two-hybrid and in vitro assays. Mutation of the motif identified in the phage display screen eliminated the interaction, corroborating the results of the phage display screen. The domain of CstF77 that interacts with Fip1 lies at its extreme C-terminus and is distinct from the part of CstF77 that binds CstF64. Taken together, these results suggest that Fip1 is situated near CstF64 in the polyadenylation complex.  相似文献   

2.
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.  相似文献   

3.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage. Received: 6 June 1997 / Accepted: 5 November 1997  相似文献   

4.
Polyadenylation is the second step in 3' end formation of most eukaryotic mRNAs. In Saccharomyces cerevisiae, this step requires three trans-acting factors: poly(A) polymerase (Pap1p), cleavage factor I (CF I) and polyadenylation factor I (PF I). Here, we describe the purification and subunit composition of a multiprotein complex containing Pap1p and PF I activities. PF I-Pap1p was purified to homogeneity by complementation of extracts mutant in the Fip1p subunit of PF I. In addition to Fip1p and Pap1p, the factor comprises homologues of all four subunits of mammalian cleavage and polyadenylation specificity factor (CPSF), as well as Ptalp, which previously has been implicated in pre-tRNA processing, and several as yet uncharacterized proteins. As expected for a PF I subunit, pta1-1 mutant extracts are deficient for polyadenylation in vitro. PF I also appears to be functionally related to CPSF, as it polyadenylates a substrate RNA more efficiently than Pap1p alone. Possibly, the observed interaction of the complex with RNA tethers Pap1p to its substrate.  相似文献   

5.
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be essential for polyadenylation. Here, we demonstrate that Yth1p is also required for the cleavage reaction and that two protein domains have distinct roles in 3'-end processing. The C-terminal part is required in polyadenylation to tether Fip1p and poly(A) polymerase to the rest of CPF. A single point mutation in the highly conserved second zinc finger impairs both cleavage and polyadenylation, and affects the ability of Yth1p to interact with the pre-mRNA and other CPF subunits. Finally, we find that Yth1p binds to CYC1 pre-mRNA in the vicinity of the cleavage site. Our results indicate that Yth1p is important for the integrity of CPF and participates in the recognition of the cleavage site.  相似文献   

6.
During mRNA 3′ end formation, cleavage stimulation factor (CstF) binds to a GU-rich sequence downstream from the polyadenylation site and helps to stabilise the binding of cleavage-polyadenylation specificity factor (CPSF) to the upstream polyadenylation sequence (AAUAAA). The 64 kDa subunit of CstF (CstF-64) contains an RNA binding domain and is responsible for the RNA binding activity of CstF. It interacts with CstF-77, which in turn interacts with CPSF. The Drosophila suppressor of forked gene encodes a homologue of CstF-77, and mutations in it affect mRNA 3′ end formation in vivo. A Drosophila homologue for CstF-64 has now been isolated, both through homology with the human protein and through protein–protein interaction in yeast with the suppressor of forked gene product. Alignment of CstF-64 homologues shows that the proteins have a conserved N-terminal 200 amino acids, the first half of which is the RNA binding domain with the second half likely to contain the CstF-77 interaction domain; a central region variable in length and rich in glycine, proline and glutamine residues and containing an unusual degenerate repeat motif; and then a conserved C-terminal 50 amino acids. In Drosophila, the CstF-64 gene has a single 63 bp intron, is transcribed throughout development and probably corresponds to l(3)91Cd.  相似文献   

7.
Cleavage stimulation factor (CstF) is a heterotrimeric protein complex essential for polyadenylation of mRNA precursors. The 77 kDa subunit, CstF-77, is known to mediate interactions with the other two subunits of CstF as well as with other components of the polyadenylation machinery. We report here the crystal structure of the HAT (half a TPR) domain of murine CstF-77, as well as its C-terminal subdomain. Structural and biochemical studies show that the HAT domain consists of two subdomains, HAT-N and HAT-C domains, with drastically different orientations of their helical motifs. The structures reveal a highly elongated dimer, spanning 165 A, with the dimerization mediated by the HAT-C domain. Light-scattering studies, yeast two-hybrid assays, and analytical ultracentrifugation measurements confirm this self-association. The mode of dimerization and the relative arrangement of the HAT-N and HAT-C domains are unique to CstF-77. Our data support a role for CstF dimerization in pre-mRNA 3' end processing.  相似文献   

8.
Processing of the 3′ end of mRNA precursors depends on several proteins. The multisubunit cleavage and polyadenylation specificity factor (CPSF) is required for cleavage of the mRNA precursor as well as polyadenylation. CPSF interacts with the cleavage stimulatory factor complex (CstF), and this interaction increases the specificity of binding. Following cleavage downstream of the AAUAAA site, CPSF and poly(A) polymerase (PAP) are required for efficient polyadenylation. Recently, it has been shown that 160-kDa subunit of CPSF interacts directly with the 77-kDa subunit of CstF, which is homologous to the product encoded by the Drosophila gene su(f), and with PAP. Here we report the cloning and characterization of a Drosophila homologue of CPSF-160. The 1329-amino acid dCPSF protein exhibits about 45% and 20% sequence identity, respectively, to its mammalian and yeast counterparts over its entire length. We show that the CPSF homologue is expressed throughout development and that CPSF is essential for viability. Mutations in the cpsf gene did not alter the phenotype of homozygous su(f) mutations, suggesting that, for most genes, processing of 3′ termini is not sensitive to small changes in cpsf and su(f) dosage.  相似文献   

9.
Fip1 is an essential component of the Saccharomyces cerevisiae polyadenylation machinery and the only protein known to interact directly with poly(A) polymerase (Pap1). Its association with Pap1 inhibits the extension of an oligo(A) primer by limiting access of the RNA substrate to the C-terminal RNA binding domain (C-RBD) of Pap1. We present here the identification of separate functional domains of Fip1. Amino acids 80 to 105 are required for binding to Pap1 and for the inhibition of Pap1 activity. This region is also essential for viability, suggesting that Fip1-mediated repression of Pap1 has a crucial physiological function. Amino acids 206 to 220 of Fip1 are needed for the interaction with the Yth1 subunit of the complex and for specific polyadenylation of the cleaved mRNA precursor. A third domain within amino acids 105 to 206 helps to limit RNA binding at the C-RBD of Pap1. Our data demonstrate that the C terminus of Fip1 is required to relieve the Fip1-mediated repression of Pap1 in specific polyadenylation. In the absence of this domain, Pap1 remains in an inhibited state. These findings show that Fip1 has a crucial regulatory function in the polyadenylation reaction by controlling the activity of poly(A) tail synthesis through multiple interactions within the polyadenylation complex.  相似文献   

10.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

11.
The Cleavage stimulation Factor (CstF) complex is composed of three subunits and is essential for pre-mRNA 3'-end processing. CstF recognizes U and G/U-rich cis-acting RNA sequence elements and helps stabilize the Cleavage and Polyadenylation Specificity Factor (CPSF) at the polyadenylation site as required for productive RNA cleavage. Here, we describe the crystal structure of the N-terminal domain of Drosophila CstF-50 subunit. It forms a compact homodimer that exposes two geometrically opposite, identical, and conserved surfaces that may serve as binding platform. Together with previous data on the structure of CstF-77, homodimerization of CstF-50 N-terminal domain supports the model in which the functional state of CstF is a heterohexamer.  相似文献   

12.
The interaction of the Fip1 subunit of polyadenylation factor I with the Saccharomyces cerevisiae poly(A) polymerase (PAP) was assayed in vivo by two-hybrid analysis and was found to involve two separate regions on PAP, located at opposite ends of the protein sequence. In vitro, Fip1 blocks access of the RNA primer to an RNA binding site (RBS) that overlaps the Fip1 carboxy-terminal interaction region and, in doing so, shifts PAP to a distributive mode of action. Partial truncation of this RBS has the same effect, indicating that this site is required for processivity. A comparison of the utilization of ribo- and deoxyribonucleotides as substrates indicates the existence on PAP of a second RBS which recognizes the last three nucleotides at the 3′ end of the primer. This site discriminates against deoxyribonucleotides at the 3′ end, and interactions at this site are not affected by Fip1. Further analysis revealed that the specificity of PAP for adenosine is not simply a function of the ATP binding site but also reflects interactions with bases at the 3′ end of the primer and at another contact site 14 nucleotides upstream of the 3′ end. These results suggest that the unique specificity of PAP for ribose and base, and thus the extent and type of activity with different substrates, depends on interactions at multiple nucleotide binding sites.  相似文献   

13.
14.
Regulated mRNA translation is a hallmark of oocytes and early embryos, of which cytoplasmic polyadenylation is a major mechanism. This process involves multiple protein components, including the CPSF (cleavage and polyadenylation specificity factor), which is also required for nuclear polyadenylation. The CstF (cleavage stimulatory factor), with CPSF, is required for the pre-mRNA cleavage before nuclear polyadenylation. However, some evidence suggests that the CstF-77 subunit might have a function independent of nuclear polyadenylation, which could be related to the cell cycle. As such, we addressed the question whether CstF-77 might have a role in cytoplasmic polyadenylation. We investigated the function of the CstF-77 protein in Xenopus oocytes, and show that CstF-77 has indeed a role in the cytoplasm. The Xenopus CstF-77 protein (X77K) localizes mainly to the nucleus, but also in punctuate cytoplasmic foci. We show that X77K resides in a cytoplasmic complex with eIF4E, CPEB (cytoplasmic polyadenylation element-binding protein), CPSF-100 and XGLD2, but is not required for cytoplasmic polyadenylation per se. Impairment of X77K function in ovo leads to an acceleration of the G(2)/M transition, with a premature synthesis of Mos and AuroraA proteins. However, the kinetic of Mos mRNA polyadenylation is not modified. Furthermore, X77K represses mRNA translation in vitro. These results suggest that X77K could be involved in masking of mRNA prior to polyadenylation.  相似文献   

15.
16.
In humans, mRNA polyadenylation involves the participation of about 20 factors in four main complexes that recognize specific RNA sequences. Notably, CFIm25, CPSF73, and PAP have essential roles for poly(A) site selection, mRNA cleavage, and adenosine residues polymerization. Besides the relevance of polyadenylation for gene expression, information is scarce in intestinal protozoan parasites that threaten human health. To better understand polyadenylation in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum, which represent leading causes of diarrhea worldwide, genomes were screened for orthologs of human factors. Results showed that Entamoeba histolytica and C. parvum have 16 and 12 proteins out of the 19 human proteins used as queries, respectively, while G. lamblia seems to have the smallest polyadenylation machinery with only six factors. Remarkably, CPSF30, CPSF73, CstF77, PABP2, and PAP, which were found in all parasites, could represent the core polyadenylation machinery. Multiple genes were detected for several proteins in Entamoeba, while gene redundancy is lower in Giardia and Cryptosporidium. Congruently with their relevance in the polyadenylation process, CPSF73 and PAP are present in all parasites, and CFIm25 is only missing in Giardia. They conserve the functional domains and predicted folding of human proteins, suggesting they may have the same roles in polyadenylation.  相似文献   

17.
CF II, a factor required for cleavage of the 3' ends of mRNA precursor in Saccharomyces cerevisiae, has been shown to contain four polypeptides. The three largest subunits, Cft1/Yhh1, Cft2/Ydh1, and Brr5/Ysh1, are homologs of the three largest subunits of mammalian cleavage-polyadenylation specificity factor (CPSF), an activity needed for both cleavage and poly(A) addition. In this report, we show by protein sequencing and immunoreactivity that the fourth subunit of CF II is Pta1, an essential 90-kDa protein originally implicated in tRNA splicing. Yth1, the yeast homolog of the CPSF 30-kDa subunit, is not detected in this complex. Extracts prepared from pta1 mutant strains are impaired in the cleavage and the poly(A) addition of both GAL7 and CYC1 substrates and exhibit little processing activity even after prolonged incubation. However, activity is efficiently rescued by the addition of purified CF II to the defective extracts. Extract from a strain with a mutation in the CF IA subunit Rna14 also restored processing, but extract from a brr5-1 strain did not. The amounts of Pta1 and other CF II subunits are reduced in pta1 strains, suggesting that levels of the subunits may be coordinately regulated. Coimmunoprecipitation experiments indicate that the CF II in extract can be found in a stable complex containing Pap1, CF II, and the Fip1 and Yth1 subunits of polyadenylation factor I. While purified CF II does not appear to retain the association with these other factors, this larger complex may be the form recruited onto pre-mRNA in vivo. The involvement of Pta1 in both steps of mRNA 3'-end formation supports the conclusion that CF II is the functional homolog of CPSF.  相似文献   

18.
The polyadenylation of messenger RNAs is mediated by a multi-subunit complex that is conserved in eukaryotes. Among the most interesting of these proteins is the 30-kDa-subunit of the Cleavage and Polyadenylation Specificity Factor, or CPSF30. In this study, the Arabidopsis CPSF30 ortholog, AtCPSF30, is characterized. This protein possesses an unexpected endonucleolytic activity that is apparent as an ability to nick and degrade linear as well as circular single-stranded RNA. Endonucleolytic action by AtCPSF30 leaves RNA 3′ ends with hydroxyl groups, as they can be labeled by RNA ligase with [32P]-cytidine-3′,5′-bisphosphate. Mutations in the first of the three CCCH zinc finger motifs of the protein abolish RNA binding by AtCPSF30 but have no discernible effects on nuclease activity. In contrast, mutations in the third zinc finger motif eliminate the nuclease activity of the protein, and have a modest effect on RNA binding. The N-terminal domain of another Arabidopsis polyadenylation factor subunit, AtFip1(V), dramatically inhibits the nuclease activity of AtCPSF30 but has a slight negative effect on the RNA-binding activity of the protein. These results indicate that AtCPSF30 is a probable processing endonuclease, and that its action is coordinated through its interaction with Fip1.  相似文献   

19.
The Arabidopsis genome possesses a number of sequences that are predicted to encode proteins that are similar to mammalian and yeast polyadenylation factor subunits. One of these resides on chromosome V and has the potential to encode a polypeptide related to the 100 kDa subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF). This gene encodes a ca. 2400 nucleotide mRNA that in turn can be translated to yield a polypeptide that is 39% identical to the mammalian CPSF100 protein. Antibodies raised against the Arabidopsis protein recognized distinctive polypeptides in nuclear extracts prepared from pea and wheat germ, consistent with the hypothesis that the Arabidopsis protein is resident in a nuclear polyadenylation complex. Interestingly, the Arabidopsis CPSF100 was found to interact with a portion of a nuclear poly(A) polymerase. This interaction was attributable to a 60 amino acid domain in the CPSF100 polypeptide and the N-terminal 220 amino acids of the poly(A) polymerase. An analogous interaction has yet to be described in other eukaryotes. The interaction with PAP thus indicates that the plant CPSF100 polypeptide is likely part of the 3-end processing machinery, but suggests that this complex may function differently in plants than it does in mammals and yeast.  相似文献   

20.
Vertebrate polyadenylation sites are identified by the AAUAAA signal and by GU-rich sequences downstream of the cleavage site. These are recognized by a heterotrimeric protein complex (CstF) through its 64 kDa subunit (CstF-64); the strength of this interaction affects the efficiency of poly(A) site utilization. We present the structure of the RNA-binding domain of CstF-64 containing an RNA recognition motif (RRM) augmented by N- and C-terminal helices. The C-terminal helix unfolds upon RNA binding and extends into the hinge domain where interactions with factors responsible for assembly of the polyadenylation complex occur. We propose that this conformational change initiates assembly. Consecutive Us are required for a strong CstF-GU interaction and we show how UU dinucleotides are recognized. Contacts outside the UU pocket fine tune the protein-RNA interaction and provide different affinities for distinct GU-rich elements. The protein-RNA interface remains mobile, most likely a requirement to bind many GU-rich sequences and yet discriminate against other RNAs. The structural distinction between sequences that form stable and unstable complexes provides an operational distinction between weakly and strongly processed poly(A) sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号