首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synopsis The behaviour of three piranha species,Serrasalmus marginatus, S. spilopleura, andPygocentrus nattereri, and their prey fishes was studied underwater in the Pantanal region, Mato Grosso, Brazil. General habits, predatory tactics, feeding behaviour, and social interactions while foraging, as well as defensive tactics of prey fishes were observed.S. marginatus is solitary whereas the other two species live in shoals; their agonistic behaviour varies accordingly, the simplest being displayed by the solitary species. Predatory tactics and feeding behaviour also vary:S. spilopleura shows the most varied diet and highly opportunistic feeding strategy, which includes aggressive mimicry. The solitaryS. marginatus, besides fin and scale-eating, occasionally cleans larger individuals ofP. nattereri. Several cichlid species display defensive tactics clearly related to piranha attacks: tail protecting, watching, and confronting the predator are the most commonly observed behaviours. Piranhas seem to strongly influence use of habitat, social structure, and foraging mode of the fish communities.  相似文献   

2.
J. P. Croxall 《Ibis》1977,119(2):113-146
Fifty species of insectivorous warblers Sylviidae, flycatchers Muscicapidae and whistlers Pachycephalidae were studied in primary rainforest at various localities in New Guinea. The structure of the various forest types is described and the birds' feeding ecology and behaviour analysed by recognizing three main foraging techniques and five horizontal and three vertical basic structural divisions of the habitats. Altitudinal ranges of the species are assessed to determine potential co-existence and they are divided into lowland and lower montane groups (either side of the main avifaunal discontinuity at 1500 m) with a third small group occurring in both areas and a fourth group of 12 lower montane species that occur also in the structurally much simpler Upper Montane forest. The feeding behaviour and ecology of the species within each major habitat are compared, with particular attention to taxonomically related and ecologically similar species. Other important considerations—additional behavioural differences, notable morphological distinctions, altitudinal separation of ranges within the habitat—are also noted. The likely importance of differences in foraging behaviour and feeding sites for reducing competition between related species is amply demonstrated, members of several pairs and groups of species have nearly mutually exclusive preferences. The overall pattern of habitat utilization is, however, extremely complex with nearly all stations used, in a variety of ways, by several species and there are many instances of substantial similarity between pairs of species, often involving congeners. The calculation of information theory derived indices of foraging diversity and overlap enables more general comparisons between the altitudinally graded habitats to be made and differences related to current ideas on tropical species diversity. Between Lowland and Lower Montane forest there is a fairly general trend of reduction in foraging diversity and decrease in the mean overlap between species in many genera and groups. The 12 species that continue into the simpler Upper Montane forest show very significantly reduced foraging diversity (compared with their values in lower montane forest) and also less overlap, indicating a different relationship between these species in the absence of the other Lower Montane forest birds. Together these results suggest that the most tropical (i.e., lowland) species show greatest overlap but do not necessarily have smaller niches. In progressively higher habitats there is a bias to the disappearance of generalist (high diversity index) species. These mainly use flycatcher-gleaning techniques supporting suggestions that the increase in insectivorous species in the tropics is partly due to exploitation of feeding strategies related to hovering. Habitat and ecological factors influencing this are assessed. The importance of altitudinal isolating mechanisms is also discussed and, amongst the species studied, both on average and in specific cases, those with the greatest similarities in foraging behaviour and ecology are segregated altitudinally and do not co-exist. It is suggested, however, that substantial overlap between many co-existing tropical species may not be abnormal, but rather an adaptation for ensuring maximum efficiency of habitat utilization in the prevailing environmental conditions of tropical rainforest.  相似文献   

3.
1. In order to study and predict population distribution, it is crucial to identify and understand factors affecting individual movement decisions at different scales. Movements of foraging animals should be adjusted to the hierarchical spatial distribution of resources in the environment and this scale-dependent response to environmental heterogeneity should differ according to the forager's characteristics and exploited habitats. 2. Using First-Passage Time analysis, we studied scales of search effort and habitat used by individuals of seven sympatric Indian Ocean Procellariiform species fitted with satellite transmitters. We characterized their search effort distribution and examined whether species differ in scale-dependent adjustments of their movements according to the marine environment exploited. 3. All species and almost all individuals (91% of 122 individuals) exhibited an Area-Restricted Search (ARS) during foraging. At a regional scale (1000s km), foraging ranges showed a large spatial overlap between species. At a smaller scale (100s km, at which an increase in search effort occurred), a segregation in environmental characteristics of ARS zones (where search effort is high) was found between species. 4. Spatial scales at which individuals increased their search effort differed between species and also between exploited habitats, indicating a similar movement adjustment for predators foraging in the same habitat. ARS zones of the two populations of wandering albatross Diomedea exulans (Crozet and Kerguelen) were similar in their adjustments (i.e. same ARS scale) as well as in their environmental characteristics. These two populations showed a weak spatial overlap in their foraging distribution, with males foraging in more southerly waters than females in both populations. 5. This study demonstrates that predators of several species adjust their foraging behaviour to the heterogeneous environment and these scale-dependent movement adjustments depend on both forager and environment characteristics.  相似文献   

4.
1. In lentic freshwater habitats, the composition of animal assemblages shifts along a gradient from temporary to permanent basins. When habitats with different degrees of permanence are at the scale of the home range of species, they constitute alternatives in terms of energy acquisition through feeding. 2. In this context, previous studies showed an advantage of metamorphic over paedomorphic tiger salamanders (Ambystoma tigrinum) in temporary ponds which are only available to metamorphs. The aim of this study was to establish whether salamanders obtain similar benefits in ponds that do not differ in water permanence and whether salamanders shifted from detrimental to advantageous ponds. To this end, we determined the feeding habits, body condition and movement patterns of the two morphs in a complex of four permanent and four temporary ponds. 3. Consistent with previous studies, metamorphs consumed higher‐quality diets than paedomorphs in term of energy intake. However, these differences occurred because metamorphs consumed fairy shrimp in a single temporary pond. Individual movement patterns confirmed that most of the metamorphs used different aquatic habitats both within and between years and that most of them moved from permanent ponds for breeding towards the most profitable temporary pond in terms of foraging. 4. These results indicate that habitat selection by salamanders is optimal in term of energy intake in metamorphs that use high quality ponds independently of hydroperiod. It seems that both spatial and temporal variation can influence the relative foraging success of each morph.  相似文献   

5.
The feeding ecology of three Costa Rican finches occurring in mixed flocks, Tiaris olivacea, Sporophila aurita corvina and Sporophila torquella , was investigated by measuring both behavioural and ecological variables. Observations on foraging height, rate of hopping and pecking rate, as well as the identity, proximity and number of nearest neighbours were recorded. In addition the duration of all feeding and perching episodes were timed. Comparisons were also made between the abundances of food items (grass seeds) consumed and those potentially available for consumption.
The analysis of variance of the feeding behaviour revealed that the presence or absence of neighbouring birds, whether of the same or different species, influenced the duration of feeding bouts more significantly than did either differences in habitat or species-characteristic behaviour. In addition the dietary comparisons revealed overlap in both species and size of seed consumed. Such similarities suggest that these species are not partitioning fields in the classical sense.
We propose that the increase in the duration of the feeding bout associated with the presence of mixed species aggregations leads to increased feeding efficiency and is the result of intra- and inter-specific social learning. Certainly flocking is often advantageous, since searching in a group facilitates finding clumped resources; mixed species flocking, by increasing exposure to a diversity of foraging places and patterns, can further augment feeding efficiency.  相似文献   

6.
The successful reintroduction and restocking of the European Bison demands a reliable knowledge of the biology of this species. Yet little is known to date about the European bison, and empirical data remains insufficient to set up a reliable plan ensuring the reintroduction, maintenance and survival of populations in habitats that have been largely modified by human activity. Studies of the ecology, social behaviour and management of bison are therefore crucial to the conservation of this species and its cohabitation with humans. To meet these challenges, we focused on movement patterns and space use in a semi-free-ranging herd of European bison living in the Réserve Biologique des Monts-d’Azur (France). Bison spend over 80% of their time foraging and resting; foraging mainly occurs around the artificial feeding sites (i.e., hay racks) or in meadows. The time of day and the presence of snow have no influence on the time budget allocated to each activity. Animals, however, spend more time at the food racks in winter. Bison also spend most of their time in small groups of individuals, confirming the occurrence of both fission-fusion dynamics and sexual segregation in this species. Bison seem to follow a Lévy walk pattern of movement, which is probably related to the geographical distribution and size of food patches in the reserve. The conclusions of this study provide a better understanding of the sociality, life habits and habitat use of bison, and also describe how the provision of hay affects all these behaviours. These results could be useful in the development of tools to select the most suitable habitats for the reintroduction, management and conservation of bison populations.  相似文献   

7.
The harbour seal (Phoca vitulina) is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale.  相似文献   

8.
Although dam removal has become an increasingly popular tool for river restoration, there is limited knowledge regarding the ecological effects of dam removal. The purpose of our study was to document feeding habits of coexisting brook charr, brown trout, and rainbow trout above and below a dam that is in the process of a staged removal. Modification of sediment transport caused by Stronach Dam since 1912 has affected stream channel configuration, fish habitat, and many other physical and biological processes. In order to document salmonine feeding habits above and below the dam, we selected zones to represent downstream conditions and areas of river upstream of the dam that encompassed the original reservoir and a stretch of river further upstream that was not hydraulically influenced by the dam. Because physical habitat largely governs aquatic community composition in streams, we expected these effects to be reflected in the fish and macroinvertebrate communities. In particular, we expected limited prey availability and salmonine feeding in the impacted upstream and downstream zones characterized by fine substrate composition and greater macroinvertebrate diversity and salmonine feeding opportunities in the non-impacted zone characterized by coarse substrate. We also expected mean percent wet stomach content weights to be higher downstream, as other studies have documented an increase in piscivory on blocked migratory prey species downstream of dams. Contrary to expectations, the downstream zone of the river contained the highest abundance of drifting invertebrate taxa and, although differences in habitat occurred among the zones, the diversity of drifting macroinvertebrates and stomach contents of salmonines were similar throughout the river. Thus, in this case, the presence of altered habitat caused by a dam did not appear to negatively affect salmonine food habits. Consequently, we expect no major changes in salmonine food habits after the dam removal is completed.  相似文献   

9.
During this study (December 2009 to December 2010), underwater visual surveys using the focal animal method were performed in the coastal reefs of Tamandaré, north‐eastern Brazil. The aim was to analyse the effects of the life phase (juvenile and adult) and schooling patterns (school and solitary) on the feeding behaviour (foraging rates and substratum preferences) of four species of the genus Haemulon (Haemulon aurolineatum, Haemulon parra, Haemulon plumieri and Haemulon squamipinna). PERMANOVA analysis (P < 0·05) indicated that ontogenetic changes and schooling patterns directly influence foraging behaviour. Schooling individuals had low foraging rates (mean ± s.d . = 2·3 ± 2·1 bites 10 min?1) and mobility, usually remaining near the bottom; however, solitary fishes had high foraging rates (mean ± s.d . = 12·5 ± 4·6 bites 10 min?1). Juveniles preferred feeding in the water column (75% of the total number of bites), whereas adults foraged mainly in sand (80%) and bare rock (20%). All four Haemulon species displayed similar patterns of feeding behaviour as well as preferences for foraging sites and display competition for food resources. In contrast, little is known about their habitat use and foraging behaviour over the diel cycle, particularly the newly settled and early juvenile stages.  相似文献   

10.
Volker Salewski 《Ostrich》2013,84(1-2):191-193
Salewski, V. 2000. Microhabitat use and feeding strategies of the Pied Flycatcher and the Willow Warbler in their West-African winter quarters compared with resident species. Ostrich 71 (1 & 2): 191–193.

Habitat choice, microhabitat and foraging behaviour of the palaearctic Pied Flycatcher and Willow Warbler are described in their West-African wintering areas and are compared with those of resident species. The migrants were more flexible in habitat choice and foraging techniques, but in general did not feed in more open habitat.  相似文献   

11.
Diet and habitat overlap was studied in two sympatric primate species sharing two neighbouring patches of fragmented gallery forest in Tana River, Kenya. Systematic data on feeding and ranging behaviour was collected on one group each of the Tana crested mangabey Cercocebus galeritus and yellow baboon Papio cynocephalus between August 1992 and February 1993. When rainfall was low and fruit resources scarce, yellow baboons spent most of their foraging time in the open woodlands while mangabeys foraged within the forest. At this period, diet and habitat overlaps between the two species were low. As rainfall increased, followed by a gradual rise in fruit availability, yellow baboons shifted their foraging range and both species became confined to the forest habitat. Consequently, both diet and habitat overlaps increased, peaking at the end of the rainy season. Mangabeys showed a reduced within-group dispersal and also spent significantly less time foraging in a given forest patch when yellow baboons were also present within the same forest patch.
Increased habitat and diet overlaps during the wet season need not have resulted in increased interspecific competition for food because at this period, fruits were readily available in the forest.  相似文献   

12.
生态系统中生境斑块并非孤立存在,而是嵌于周边景观基质中。生境内种群赖以生存的资源和环境条件不仅取决于生境本身,更与景观基质组成与结构紧密关联。黑颈鹤是青藏高原的旗舰物种,雅鲁藏布江中游河谷高寒湿地是全球最大的黑颈鹤越冬地,为其提供了良好的觅食生境。厘清该区域黑颈鹤觅食生境选择如何受景观基质组成结构的影响,对于青藏高原旗舰物种保护以及流域生态系统综合治理具有重要意义。运用景观生态学原理,以遥感影像和实地黑颈鹤种群调查数据为基础,结合景观基质多尺度缓冲区构建、相关分析以及Maxent模型,分析2000-2020年雅江中游河谷黑颈鹤国家级自然保护区(日喀则片区)景观格局时空变化和觅食地生境特征及其与黑颈鹤种群的关系,探究景观基质对黑颈鹤觅食地选择的影响,并利用关键生境因子模拟黑颈鹤生境适宜性分布。通过分析发现:(1)时间尺度上,雅江中游河谷耕地面积先增加后下降,滩地持续减少;空间尺度上,觅食黑颈鹤种群呈东多西少的集群分布特征,其分布范围与河谷内耕地分布基本吻合;(2)景观基质对黑颈鹤觅食地选择影响显著。景观结构上,黑颈鹤偏好连通性好、优势度高的景观基质;景观组成上,偏好基质中耕地和水域类型,这与黑颈鹤的觅食习性及对环境安全的生态位需求有关;(3)景观基质结构组成对黑颈鹤觅食地选择的影响具有显著的尺度效应。景观基质结构影响最显著的空间尺度为1500-2000m。但基质中耕地、草地和水域等景观组成要素对黑颈鹤的影响具有不同空间尺度效应,分别为1500m、3000m和4000m;(4)通过模型模拟,揭示出黑颈鹤适宜生境面积先增后减,但总体较2000年呈上升趋势,且基质中觅食地与耕地的距离、水域斑块密度和偏好景观组成的优势度始终是生境适宜性解释率最高的景观因子。本研究揭示出,该区域乡村规划应该统筹优化黑颈鹤栖息生境及其景观基质中的作物生产以及居民生活,形成以黑颈鹤旗舰物种保护为核心的高寒湿地生态系统综合管理模式,从而增强青藏高原高寒生态系统的稳定性和可持续性,同时也为深入研究物种生境选择机制提供了思路。  相似文献   

13.
Dramatic population declines among species of pelagic shark as a result of overfishing have been reported, with some species now at a fraction of their historical biomass. Advanced telemetry techniques enable tracking of spatial dynamics and behaviour, providing fundamental information on habitat preferences of threatened species to aid conservation. We tracked movements of the highest pelagic fisheries by-catch species, the blue shark Prionace glauca, in the North-east Atlantic using pop-off satellite-linked archival tags to determine the degree of space use linked to habitat and to examine vertical niche. Overall, blue sharks moved south-west of tagging sites (English Channel; southern Portugal), exhibiting pronounced site fidelity correlated with localized productive frontal areas, with estimated space-use patterns being significantly different from that of random walks. Tracked female sharks displayed behavioural variability in diel depth preferences, both within and between individuals. Diel depth use ranged from normal DVM (nDVM; dawn descent, dusk ascent), to reverse DVM (rDVM; dawn ascent, dusk descent), to behavioural patterns where no diel differences were apparent. Results showed that blue sharks occupy some of the most productive marine zones for extended periods and structure diel activity patterns across multiple spatio-temporal scales in response to particular habitat types. In so doing, sharks occupied an extraordinarily broad vertical depth range for their size (1.0-2.0 m fork length), from the surface into the bathypelagic realm (max. dive depth, 1160 m). The space-use patterns of blue sharks indicated they spend much of the time in areas where pelagic longlining activities are often highest, and in depth zones where these fisheries particularly target other species, which could account for the rapid declines recently reported for blue sharks in many parts of the world's oceans. Our results provide habitat targets for blue shark conservation that may also be relevant to other pelagic species.  相似文献   

14.
Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1–70.0%) of time at sea resting on water and 18.2% (range: 2.3–49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8–237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey.  相似文献   

15.
We used live-trapping and foraging to test for the effect of habitat selection and diet on structuring a community of six small mammals and one bird within the Soutpansberg, South Africa. We established grids that straddled adjacent habitats: woodland, rocky hillside, and grassland. Trapping and foraging were used to estimate abundance, habitat use, and species-specific foraging costs. The species with the highest abundance and foraging activity in a habitat, activity time, or food was considered the most efficient and presumed to have a competitive advantage. All species exhibited distinct patterns of spatial and temporal habitat preference which provided the main mechanism of coexistence, followed by diet selection. The study species were organized into three assemblages (α diversity): grassland, Rhabdomys pumilio, Dendromus melanotis, and Mus minutoides.; woodland, Aethomys ineptus and Micaelamys namaquensis; and rock-dwelling, M. namaquensis and Elephantulus myurus. Francolinus natalensis foraged in open rocky areas and under wooded islands within the grassland. Species organization across the habitats suggested that feeding opportunities are available within all habitats; however, distinct habitat preferences resulted from differing foraging aptitudes and efficiencies of the competing species. At Lajuma, species distribution and coexistence are promoted through distinct habitat preferences that were shaped by competition and species-specific foraging costs. The combination of trapping and foraging provided a mechanistic approach that integrates behavior into community ecology by ‘asking’ the animal to reveal its perspective of the environment. Using spatial and temporal foraging decisions—as behavioral indicators—enables us to guide our understanding for across-taxa species coexistence.  相似文献   

16.
From June through December, data were collected on the diet and ranging patterns of moustached (Saguinus mystax) and saddle-back (Saguinus fuscicollis) tamarin monkeys in the Amazon Basin of northeastern Peru. During this 7-month period, insects and nonleguminous fruits accounted for 83% of tamarin feeding and foraging time. Despite marked seasonal variation in rainfall and forest productivity, patterns of habitat utilization, day range, dietary diversity, resource exploitation, and activity budget remained relatively stable throughout the year. Moustached and saddle-back tamarins appear to solve problems of food acquisition and exploit patchily distributed feeding sites using a relatively limited set of foraging patterns. In general, these primates concentrate their daily feeding efforts on several trees from a small number of target plant species. These feeding sites are uncommon, produce only a small amount of ripe fruit each day, and are characterized by a high degree of intraspecific fruiting and flowering synchrony. Trees of the same species are frequently visited in succession, and individual feeding sites are revisited several times over the course of 1–2 weeks. This type of foraging pattern occurred during both dry and wet seasons and when exploiting fruit, nectar, legume, and exudate resources. Seasonal variation in the percentage of feeding and foraging time devoted to insectivory was also limited. In this investigation, there was no consistent evidence that temporal changes in overall forest fruit production had a major impact on the feeding, foraging, or ranging behavior of either tamarin species.  相似文献   

17.
Abstract In a ‘restinga’ habitat of southeastern Brazil, we studied the food habits and the microhabitat use of two lizards with distinct foraging modes: the tropidurid Tropidurus torquatus, a sit-and-wait predator, and the teiid Cnemidophorus ocellifer, a wide forager. The diet of the two species differed strongly, indicating a low level of similarity in their trophic niche. The sit-and-wait predator fed mainly on mobile prey, whereas the wide forager fed mainly on sedentary prey (larvae). The spatial niche breadth of T. torquatus was larger than that of C. ocellifer. Despite interspecific differences, the two species overlapped greatly in micro-habitat use. The data indicate that at Linhares the two lizard species differed more in food resources than in microhabitat, and that most of the food differences reflect the foraging patterns of the species.  相似文献   

18.
Optimal foraging theory has entered a new phase. It is not so much tested as used. It helps behavioural ecologists discover the nature of the information in an animals brain. It helps population ecologists reveal coefficients of interaction and their patterns of density-dependent variation. And it helps community ecologists examine niche relationships. In our studies on two species of Negev desert gerbil, we have taken advantage of the second and third of these functions. Both these gerbils prefer semi-stabilized dune habitat, and both altered their selective use of this habitat and stabilized sand according to experimental changes we made in their populations. Their changes in selectivity agree with a type of optimal foraging theory called isoleg theory. Isoleg theories provide examples of dipswitch theories – bundles of articulated qualitative predictions – that are easier to falsify than single qualitative predictions. By linking behaviour to population dynamics through isoleg theory, we were able to use the behaviour of the gerbils to reveal the shapes of their competitive isoclines. These have the peculiar non-linear shapes predicted by optimal foraging theory. Finally, when owl predation threatens, the behaviour of Gerbillus allenbyi reveals the shape of their victim isocline. As has long been predicted by predation theory and laboratory experiments, it is unimodal.  相似文献   

19.
We test whether the spatial distribution of birds within a habitat is determined by predation risk and also by interspecific competition. The work was carried out in a montane mixed forest of central Spain with four Parus species, the long-tailed tit ( Aegithalos caudatus ) and the nuthatch ( Sitta europaea ). Experimental feeders, that varied in their risk of predation, were used to control the effect of natural variations in food availability and quality on the habitat use patterns of different species. Tree gleaning passerines avoided feeding on dark inner forest places far from edges, distant from protective cover, outside the inner tree canopy and near the ground; they preferred deciduous, relatively clear forest plots. These effects remained invariable across years and weather conditions. There was a common pattern of selection of foraging locations by the four Parus species: proximity to cover and height above ground and over the lowest branches of the tree canopy positively influenced the use of feeding places. According to these patterns, the vigilance proportion of species was significantly higher when feeding far from cover than when birds were feeding near pine foliage. This pattern was also common for the four studied Parus species. Nevertheless, the interspecific dominance hierarchy of the species was positively correlated with the use of the safest feeders (feeders farther the ground and nearer from protective cover within tree canopy), being the converse with the most exposed ones. Therefore, the results of this paper demonstrate that the selection of feeding locations within habitat follows a pattern minimizing predation risk. Interspecific dominance hierarchies can lead to the exploitation of unfavourable risky patches by subordinate species.  相似文献   

20.
Fragmentation and loss of habitat are major threats to animal communities and are therefore important to conservation. Due to the complexity of the interplay of spatial effects and community processes, our mechanistic understanding of how communities respond to such landscape changes is still poor. Modelling studies have mostly focused on elucidating the principles of community response to fragmentation and habitat loss at relatively large spatial and temporal scales relevant to metacommunity dynamics. Yet, it has been shown that also small scale processes, like foraging behaviour, space use by individuals and local resource competition are also important factors. However, most studies that consider these smaller scales are designed for single species and are characterized by high model complexity. Hence, they are not easily applicable to ecological communities of interacting individuals. To fill this gap, we apply an allometric model of individual home range formation to investigate the effects of habitat loss and fragmentation on mammal and bird communities, and, in this context, to investigate the role of interspecific competition and individual space use. Results show a similar response of both taxa to habitat loss. Community composition is shifted towards higher frequency of relatively small animals. The exponent and the 95%-quantile of the individual size distribution (ISD, described as a power law distribution) of the emerging communities show threshold behaviour with decreasing habitat area. Fragmentation per se has a similar and strong effect on mammals, but not on birds. The ISDs of bird communities were insensitive to fragmentation at the small scales considered here. These patterns can be explained by competitive release taking place in interacting animal communities, with the exception of bird's buffering response to fragmentation, presumably by adjusting the size of their home ranges. These results reflect consequences of higher mobility of birds compared to mammals of the same size and the importance of considering competitive interaction, particularly for mammal communities, in response to landscape fragmentation. Our allometric approach enables scaling up from individual physiology and foraging behaviour to terrestrial communities, and disentangling the role of individual space use and interspecific competition in controlling the response of mammal and bird communities to landscape changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号