首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Explants of sugarcane, a C4 plant, were cultured in vitro for 18d on Floridalite (a solid cube consisting of vermiculite and cellulose fibers) used as supporting material with sugar-free Murashige and Skoog liquid medium with double-strength KH2PO4, MgSO4, FeSO4, and Na2-EDTA in the vessel with enhanced natural ventilation. CO2 concentration in the culture room was kept at 1500 μmol mol−1 (four times the atmospheric CO2 concentration) during the photoperiod. A factorial experiment was designed with two levels of photosynthetic photon flux (PPF) and three levels of N (number of air exchanges of the vessel). The results were compared with those in the control treatment (photomixotrophic culture using sugar-containing agar medium under low PPF and low N). PPF and N showed significant positive effects on the growth of sugarcane plantlets in vitro. In the photoautotrophic (using sugar-free medium) treatments with relatively high PPF (200–400 μmol m−2 s−1) and high N (2–10 h−1), the growth of plantlets was four to seven times greater than that in the control. Also, the culture period for multiplication and rooting was shortened from 30 d in the control to 18 d or less in the photoautotrophic, high PPF, and high N treatments. Use of porous supporting material in photoautotrophic treatments promoted rooting and plantlet growth significantly.  相似文献   

2.
The photosynthetic characteristics of coffee ( Coffea arabusta) plantlets cultured in vitro in response to different CO2 concentrations inside the culture vessel and photosynthetic photon flux (PPF) were investigated preliminarily. The estimation of net photosynthetic rate (Pn) of coffee plantlets involved three methods: (1) estimating time courses of actual Pn in situ based on measuring CO2 concentrations inside and outside the vessel during a 45-day period, (2) estimating Pn in situ at different CO2 concentrations and PPFs using the above measuring approach for 10-day and 30-day old in vitro plantlets, and (3) estimating Pn of a single leaf at different CO2 concentrations and PPFs by using a portable photosynthesis measurement system for 45-day old in vitro coffee plantlets. The results showed that coffee plantlets in vitro had relatively high photosynthetic ability and that the Pn increased with the increase in CO2 concentration inside the vessel. The CO2 saturation point of in vitro coffee plantlets was high (4500–5000 μmol mol-1); on the other hand, the PPF saturation point was not so high as compared to some other species, though it increased with increasing CO2 concentration inside the vessel. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Explants and seeds of Brassica campestris L. were cultured on Murashige & Skoog (1962) medium with and without sucrose in a vessel with different numbers of air changes per hour under different PPF (photosynthetic photon flux) conditions. The growth and development of plantlets in the vessel were similar to those of seedlings when cultured under the same in vitro environmental conditions. The growth and development of seedlings when cultured under the same in vitro environmental conditions. The growth and development of plantlets/seedlings were greater for treatments with a higher number of air changes per hour and a higher PPF regardless of the sucrose concentration in the culture medium.The CO2 concentration in the vessel with a lower number of air changes per hour decreased to approximately 100 ppm during the photoperiod on day 21 due to the photosynthetic activities of the plantlets/seedlings. The low CO2 concentration, in turn, reduced the net photosynthetic rate of plantlets/seedlings in the vessel, and thus affected their growth and development.Abbreviations Cin CO2 concentration in the culture vessel - Cout CO2 concentration in the culture room - MS mineral composition of Murashige & Skoog (1962) medium - PPF photosynthetic photon flux  相似文献   

4.
No significant differences were found between four mathematical equations describing the response of CO2 exchange rate to photosynthetic photon flux density in seven poplar clones under laboratory conditions. Choice of an optimal equation for poplar may be based on the contemplated aims. High significant differences (at p<0.001) were found among the clones.Research was supported by the Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw (I.W.O.N.L.), Brussels.  相似文献   

5.
Summary A comparative study was conducted to optimize the vegetative growth of sweet potato (Ipomoea batatas L. (Lam), cv. Beniazuma) plantlets cultured in vitro in five different types of supporting materials: agar matrix (a seaweed derivative; Kanto Chemical Co. Inc., Tokyo), gellan gum (a Pseudomonas derivative; Kanto Chemical Co. Inc., Tokyo), vermiculite (a kind of hydrous silicates), a mixture of vermiculite and cellulose fiber (Florialite; Nisshinbo Industries, Inc., Tokyo) and cellulose plug (Sorbarod; Baumgartner Rapiers SA., Switzerland). Single nodal cuttings were cultured photoautotrophically (without any sugar in the medium and with enriched CO2 and high photosynthetic photon flux) for 21 d on MS basal medium. Plantlets exhibited the greatest growth when Florialite was used as supporting material. The leaf and root fresh and dry mass were 2.4× and 2.9×, and 2.2× and 2.8× greater, respectively, than those of the plantlets grown in the agar matrix (control). Plantlets cultured in Sorbarod supporting material exhibited the second greatest fresh and dry mass of leaves and roots followed by vermiculite and gellan gum supporting material. The most interesting feature was the development of a large number of fine lateral roots from the main adventitious root in the Florialite treatment. Among the treatments, the highest net photosynthetic rate was evident in the Florialite grown plantlets. The percent porosity of the supporting materials was highest in Sorbarod followed by Florialite and vermiculite. Plantlets transplanted from the Florialite supporting material exhibited the highest acclimatization percentage followed by that of the Sorbarod treatment.  相似文献   

6.
Rehmannia glutinosa plantlets were cultured for 4 weeks under different culture conditions to determine the optimum environment for in vitro growth and ex vitro survival. Plantlet growth increased with an increasing number of air exchanges of the culture vessel, exhibiting greatest shoot weight, total fresh weight, leaf area, and chlorophyll content at 4.4 h−1 of air exchanges. High sucrose concentration (30 g l−1) increased root weight but reduced shoot growth. Net photosynthetic rates of the plantlets were greatest when sucrose was not added to the medium. On the other hand, ex vitro survival of the plantlets was not influenced by sucrose concentration. In the experiment on difference in photoperiod and dark period temperatures (DIF) and photosynthetic photon flux (PPF), plantlet growth increased as DIF and PPF levels increased. Particularly, increasing PPF level had a more distinctive effect on plantlet growth than increasing DIF level. The interaction of DIF × PPF was also significant, showing the greatest plantlet growth in positive DIF (+8 DIF) and a high PPF (210 μmol m−2 s−1). In conclusion, the results of this experiment suggest that increased number of air exchanges of the culture vessel, decreased sucrose concentration, and positive DIF in combination with high PPF level enhanced growth and acclimatization of Rehmannia glutinosa plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Growth of coffee (Coffea arabusta) plantlets cultured in vitroas affected by sugar, types of supporting material and number of air exchanges of the vessel was investigated. Single node cuttings of in vitro coffee plantlets were cultured on half strength MS medium with or without 20 g l−1 sucrose. Two types of supporting material, agar and Florialite, and two levels of air exchange expressed by number of air exchanges per vessel, 0.2 and 2.3 h−1, were studied. At the end of a 40-day culture period, fresh weight, shoot length, root length and leaf area of plantlets when cultured on Florialite soaked in sugar-free medium and under the higher number of air exchanges were greater than those in sugar containing medium. Callus was observed at the shoot base of plantlets grown on agar medium containing sucrose. Photosynthetic ability of coffee plantlets in vitro was also significantly increased when grown on sugar-free medium with the high number of air exchanges and Florialite as a supporting material. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
A photoautotrophic soybean suspension culture (SB-P) was used to study CO2 assimilation while exposed to elevated or ambient CO2 levels. These studies showed that under elevated CO2 (5% v/v) malate is the dominant fixation product, strongly suggesting that phosphoenolpyruvate carboxylase (PEPCase) is the primary enzyme involved in carbon fixation in these cells under their normal growth conditions. Citrate and [aspartate + glutamate] were also significant fixation products during fifteen minutes of exposure to 14CO2. During the ten minute unlabeled CO2 chase however, 14C-malate continued to increase while citrate and [aspartate + glutamate] declined. Fixation of 14CO2 under ambient CO2 levels (0.037%) showed a very different product pattern as 3-phosphoglycerate was very high in the first one to two minutes followed by increases in [serine + glycine] and [aspartate + glutamate]. Hexose phosphates were also quite high initially but then declined relatively rapidly. Thus, the carbon fixation pattern at ambient CO2 levels resembles somewhat that seen in C3 leaf cells while that seen at elevated CO2 levels more closely resembles that of a C4 plant. The initial fixation product of C3 plants, 3-PGA, was never detectable under high CO2 conditions. These data suggest that an in vitro photoautotrophic system would be suitable for studying carbon fixation physiology during photosynthetic and non-photosynthetic growth.Abbreviations SB-P photoautotrophic soybean cells - PEPCase phosphoenol-pyruvate carboxylase - RuBPCase ribulose bisphosphate carboxylase/oxygenase - 3-PGA 3-phosphoglycerate  相似文献   

9.
Nodal explants of Annona squamosa L. and Annona muricata L. were cultured in vitro under various types of ventilation: airtight vessel (sealed condition; number of air exchange 0.1 h–1), natural ventilation (via a polypropylene membrane; number of air exchange 1.5 h–1), and forced ventilation (5.0 cm3 min–1 in a 60 cm3 vessel; number of air exchange 5.0 h–1). In both species, numbers of leaves, leaf areas and numbers of nodes per shoot increased with improving standards of ventilation, while leaf abscissions were substantially reduced; all the leaves had abscised in the airtight vessels after 12–15 days, but none had done so with forced ventilation. Flower-bud abscission in A. muricatashowed a similar trend after 21 days. These effects were associated with reductions in the accumulation of ethylene within the culture vessels, produced by increasing the efficiency of ventilation; ethylene was not detected in those fitted with a forced ventilation system. CO2 concentrations in culture headspaces and the net photosynthetic rates of the plantlets were also evaluated. CO2 concentrations decreased well below the ambient in the natural and airtight vessels; however, under forced ventilation, CO2 concentrations were significantly higher during the photoperiod, compared to those of the natural ventilation and airtight vessel treatments. In general, net photosynthetic rates per unit leaf area increased with increasing photosynthetic photon flux (PPF) and rates were highest in plantlets grown under forced ventilation, intermediate under natural ventilation and lowest in the airtight vessels.Eighteen different media were investigated for their effects on multiple shoot induction in both species. The best medium for multiple shoot induction and growth in A. squamosa was Murashige and Skoog medium (MS) + 6-benzylaminopurine (BA; 1.5 mg l–1) + casein hydrolysate (1.0 g l–1) and for A. muricata MS + BA (1.0 mg l–1) + naphthaleneacetic acid (NAA; 0.1 mg l–1).  相似文献   

10.
Plants of six weedy species (Amaranthus retroflexus, Echinochloa crus-galli, Panicum dichotomiflorum, Setaria faberi, Setaria viridis, Sorghum halapense) and 4 crop species (Amaranthus hypochondriacus, Saccharum officinarum, Sorghum bicolor and Zea mays) possessing the C4type of photosynthesis were grown at ambient (38 Pa) and elevated (69 Pa) carbon dioxide during early development (i.e. up to 60 days after sowing) to determine: (a) if plants possessing the C4photosynthetic pathway could respond photosynthetically or in biomass production to future increases in global carbon dioxide and (b) whether differences exist between weeds and crops in the degree of response. Based on observations in the response of photosynthesis (measured as A, CO2assimilation rate) to the growth CO2condition as well as to a range of internal CO2(Ci) concentrations, eight of ten C4species showed a significant increase in photosynthesis. The largest and smallest increases observed were for A. retroflexus (+30%) and Z. mays (+5%), respectively. Weed species (+19%) showed approximately twice the degree of photosynthetic stimulation as that of crop species (+10%) at the higher CO2concentration. Elevated carbon dioxide also resulted in significant increases in whole plant biomass for four C4weeds (A. retroflexus, E. crus-galli, P. dichotomiflorum, S. viridis) relative to the ambient CO2condition. Leaf water potentials for three selected species (A. retroflexus, A. hypochondriacus, Z. mays) indicated that differences in photosynthetic stimulation were not due solely to improved leaf water status. Data from this study indicate that C4plants may respond directly to increasing CO2concentration, and in the case of some C4weeds (e.g. A. retroflexus) may show photosynthetic increases similar to those published for C3species.  相似文献   

11.
赵露  王效科  姚扬  孙旭  周伟奇  张红星 《生态学报》2023,43(11):4549-4560
城市是人类居住和活动最集中地区,其CO2排放量占世界总排放量的71%,城市碳排放规律研究对全球碳减排工作具有重要意义。利用涡动相关技术观测了北京市某街区2015年至2016年的CO2通量,重点研究了不同时间尺度和气象条件下的CO2通量的日变化规律,分析了影响城市CO2通量的社会及自然因素。结果表明,CO2通量日变化特征具有(1)明显的早晚"双峰型"特征,早晚高峰分别出现在早上7:30-9:30和晚上17:30-20:30;(2)周末特征:周末早高峰时间延迟,晚于工作日约1.5h,且峰值低了约10.8%,但晚高峰时间提前,且峰值高于工作日约10.6%;(3)季节特征:冬季CO2通量均值和早高峰值明显高于其他季节,夏季中午具有明显低峰区;(4)风向特征:在不同来风方向上,CO2通量的日变化峰值差异很大;(5)天气特征:阴天双峰特征比晴天明显。研究表明CO2通量日变化主要与交通流量动态变化关系最为密切,其次要受到植被的影响。因此,交通减排和植被增汇对于控制城市碳排放具有重要意义。  相似文献   

12.
Ghost crabs Ocypode ceratophthalmus were exercised in air and water to measure CO2 and O2 exchange rates using the method of instantaneous measurements of oxygen consumption rate (MO2) where applicable. Average heart rate increased from 100 to nearly 400 pulses per minute after five minutes of exercise on a treadmill at a run rate of 0.133 m s?1. It took less than a minute for oxygen taken up through the lung epithelium from the air inside the branchial cavity to reach the maximal oxygen consumption rate of 26.1 mmol O2 kg?1 h?1. Resting MO2 was 4.06 mmol O2 kg?1 h?1 in air, but decreased to 3.37 mmol O2 kg?1 h?1 in seawater. Radioactive CO2 from injected l-lactate is released linearly by the lung. The percent accumulated 14-CO2 in exhaled air, plotted against time, intersects zero time on the x -axis, indicating rapid gas exchange at the lung surface. The P 50 values for native haemocyanin of 4.89 mm Hg before exercise, and 8.99 mm Hg after exercise, are typical of a high-affinity haemocyanin usually associated with terrestrial crabs. The current notion that Ocypode ceratophthalmus drown when submerged in seawater was not substantiated by our experiments. MO2 in seawater increased from 3.37 mmol O2 kg?1 h?1 for resting crabs to 5.72 mmol O2 kg?1 h?1 during exercise. When submerged by wave-seawater in the natural environment and during exercise in respirometer-seawater O. ceratophthalmus do not swim but, having a specific density of 1.044, float nearly weightless with a minimum of body movements.  相似文献   

13.
A simple method for rapid on-line measurement of ethanol, produced in a continuous bioreactor, in a steady state, is described. Soap film meter measures the rate of CO2 evolved. This value is equated to the equimolar production of ethanol. A mean 3.3% error was observed, as compared to the gas chromatography method.  相似文献   

14.
The responses of photosynthesis, Rubisco activity, Rubisco protein, leaf carbohydrates and total soluble protein to three carbon dioxide treatments were studied in winter wheat [Triticum aestivum (L.)] and barley [Hordeum vulgare (L.)]. Barley and wheat plants were grown in small field plots during 1995 and 1996 in clear, acrylic chambers (1.2–2.4 m2) and were provided with continuous carbon dioxide fertilization at concentrations of 350, 525 and 700 mol mol–1. Photosynthetic rates of barley penultimate leaves and wheat flag leaves measured at growth carbon dioxide concentrations decreased with leaf age in all three CO2 treatments during 1995 and 1996. Photosynthetic acclimation to elevated CO2 was observed on seven of eight measurement dates for barley and ten of eleven measurement dates for wheat over both years. Initial Rubisco activity, total soluble protein and Rubisco protein in barley penultimate leaves and wheat flag leaves also decreased with leaf age. Total Rubisco activity was not used because of enzyme degradation. There was a significant CO2 treatment effect on initial Rubisco activity, total soluble protein and Rubisco protein for wheat in 1995 and 1996 and for barley in 1995. Responses of barley penultimate leaf Rubisco activity and leaf protein concentrations to elevated carbon dioxide were nonsignificant in 1996. A significant CO2 treatment effect also was detected when means of Rubisco activity, soluble protein and Rubisco protein for wheat flag leaves were combined over harvests and years. These three flag leaf parameters were not significantly different in the 350 and 525 mol mol–1 CO2 treatments but were decreased during growth in 700 mol mol–1 CO2 relative to the other two CO2 treatments. Ratios of photosynthesis at 700 and 350 mol mol–1 were compared to ratios of Rubisco activity at 700 and 350 mol mol–1 using wheat flag leaf data from 1995 and 1996. Regression analysis of these data were linear [y = 0.586 + 1.103t x (r2 = 0.432)] and were significant at P 0.05. This result indicated that photosynthetic acclimation was positively correlated with changes of initial Rubisco activity in wheat flag leaves in response to CO2 enrichment. Effects of elevated CO2 on wheat leaf proteins during 1995 and 1996 and on barley during 1995 were consistent with an acceleration of senescence.  相似文献   

15.
The behaviour of myrtle (Myrtus communis L.) plantlets during the last phase of in vitro culture before transplanting was studied. Myrtle plants were sampled from Mediterranean shrubland vegetation. In vitro growth of myrtle microcuttings was evaluated during the rooting phase using 500 cm3 containers fitted with two different types of closures. The number of gas exchanges and time in which aerated and closed vessels lose half of their gas content were calculated. Both types of vessel closure allowed photosynthetic activity in myrtle cultures even though the higher aeration rate induced higher net photosynthetic rate (PN) during all the culture. In vitro morphogenetic and rooting of myrtle microcuttings were affected by the different environment conditions inside the culture vessels: plantlet growth and root formation of myrtle explants increased in aerated vessels in comparison with closed ones. The well developed root system, the higher PN and dry mass accumulation during the pre-acclimatization phase in aerated vessels induced a better ability to face the transplant stress.  相似文献   

16.
During growth of Acetobacterium woodii on fructose, glucose or lactate in a medium containing less than 0.04% bicarbonate, molecular hydrogen was evolved up to 0.1 mol per mol of substrate. Under an H2-atmosphere growth of A. woodii with organic substrates was completely inhibited whereas under an H2/CO2-atmosphere rapid growth occurred. Under these conditions H2+CO2 and the organic substrate were utilized simultaneously indicating that A. woodii was able to grow mixotrophically. Clostridium aceticum differed from A. woodii in that H2 was only evolved in the stationary phase, that the inhibition by H2 was observed at pH 8.5 but not at pH 7.5, anf that in the presence of fructose and H2+CO2 only fructose was utilized.The hydrogenase activity of fructose-grown cells of C. aceticum amounted to only 12% of that of H2+CO2-grown cells. With A. woodii a corresponding decrease of the activity of this enzyme was not observed.  相似文献   

17.
In the present paper we report partial pressureof CO2 (pCO2) data obtained off theBelgian coast during 24 cruises. The temporaland spatial resolution of this data set allowsus to discuss satisfactorily seasonal andinter-annual variability of pCO2 in thestudy area. The dynamics of pCO2 aredescribed using two approaches: fixed referencestations and area survey cruises. The air-waterfluxes of CO2 in the Scheldt estuarineplume and in the outer-plume region areestimated quantitatively, showing that theseareas correspond respectively to a net annualsource and sink of atmospheric CO2. Theannually integrated air-water fluxes for theScheldt estuarine plume range between +1.1 and+1.9 mol m–2 year–1 as a function ofthe formulation of the exchange coefficient ofCO2. The annual net emission of CO2from the estuarine plume to the atmosphere isestimated to be between +2.3 to +4.0 Gmolyear–1 which represents 17 to 29% of theestimate reported in the literature for the Scheldtinner estuary.  相似文献   

18.
One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure.  相似文献   

19.
H. Fock  K. Klug  D. T. Canvin 《Planta》1979,145(3):219-223
Using an open gas-exchange system, apparent photosynthesis, true photosynthesis (TPS), photorespiration (PR) and dark respiration of sunflower (Helianthus annuus L.) leaves were determined at three temperatures and between 50 and 400 l/l external CO2. The ratio of PR/TPS and the solubility ratio of O2/CO2 in the intercellular spaces both decreased with increasing CO2. The rate of PR was not affected by the CO2 concentration in the leaves and was independent of the solubility ratio of oxygen and CO2 in the leaf cell. At photosynthesis-limiting concentrations of CO2, the ratio of PR/TPS significantly increased from 18 to 30°C and the rate of PR increased from 4.3 mg CO2 dm-2 h-1 at 18°C to 8.6 mg CO2 dm-2 h-1 at 30°C. The specific activity of photorespired CO2 was CO2-dependent but temperature-independent, and the carbon traversing the glycolate pathway appeared to be derived both from recently fixed assimilate and from older reserve materials. It is concluded that PR as a percentage of TPS is affected by the concentrations of O2 and CO2 around the photosynthesizing cells, but the rate of PR may also be controlled by other factors.Abbreviations APS apparent photosynthesis (net CO2 uptake) - PR photorespiration (CO2 evolution in light) - RuBP ribulose-1,5-bisphosphate - TPS true photosynthesis (true CO2 uptake)  相似文献   

20.
Independent short-term effects of photosynthetic photon flux density (PPFD) of 50–400 μmol m−2 s−1, external CO2 concentration (C a) of 85–850 cm3 m−3, and vapor pressure deficit (VPD) of 0.9–2.2 kPa on net photosynthetic rate (P N), stomatal conductance (g s), leaf internal CO2 concentration (C i), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 μmol m−2 s−1 increased P N by about 50 %, but further increases in PPFD up to 1 500 μmol m−2 s−1 had no effect on P N. Increasing C a significantly increased P N and C i while g s and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced P N, but the slight decrease in g s and the slight increase in C i with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in P N. The unusually small response of g s to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (g s, C i, E) among the three cacao genotypes under any measurement conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号