首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

During development, embryos decode maternal morphogen inputs into highly precise zygotic gene expression. The discovery of the morphogen Bicoid and its profound effect on developmental programming in the Drosophila embryo has been a cornerstone in understanding the decoding of maternal inputs. Bicoid has been described as a classical morphogen that forms a concentration gradient along the antero-posterior axis of the embryo by diffusion and initiates expression of target genes in a concentration-dependent manner in the syncytial blastoderm. Recent work has emphasized the stability of the Bicoid gradient as a function of egg length and the role of nuclear dynamics in maintaining the Bicoid gradient. Bicoid and nuclear dynamics were observed but not modulated under the ideal conditions used previously. Therefore, it has not been tested explicitly whether a temporally stable Bicoid gradient prior to cellularization is required for precise patterning.

Principal Findings

Here, we modulate both nuclear dynamics and the Bicoid gradient using laminar flows of different temperature in a microfluidic device to determine if stability of the Bicoid gradient prior to cellularization is essential for precise patterning. Dramatic motion of both cytoplasm and nuclei was observed prior to cellularization, and the Bicoid gradient was disrupted by nuclear motion and was highly abnormal as a function of egg length. Despite an abnormal Bicoid gradient during cycles 11–13, Even-skipped patterning in these embryos remained precise.

Conclusions

These results indicate that the stability of the Bicoid gradient as a function of egg length is nonessential during syncytial blastoderm stages. Further, presumably no gradient formed by simple diffusion on the scale of egg length could be responsible for the robust antero-posterior patterning observed, as severe cytoplasmic and nuclear motion would disrupt such a gradient. Additional mechanisms for how the embryo could sense its dimensions and interpret the Bicoid gradient are discussed.  相似文献   

2.

Background  

The concentration gradient of Bicoid protein which determines the developmental pathways in early Drosophila embryo is the best characterized morphogen gradient at the molecular level. Because different developmental fates can be elicited by different concentrations of Bicoid, it is important to probe the limits of this specification by analyzing intrinsic fluctuations of the Bicoid gradient arising from small molecular number. Stochastic simulations can be applied to further the understanding of the dynamics of Bicoid morphogen gradient formation at the molecular number level, and determine the source of the nucleus-to-nucleus expression variation (noise) observed in the Bicoid gradient.  相似文献   

3.
The Bicoid gradient in the Drosophila embryo provided the first example of a morphogen gradient studied at the molecular level. The exponential shape of the Bicoid gradient had always been interpreted within the framework of the localized production, diffusion, and degradation model. We propose an alternative mechanism, which assumes no Bicoid degradation. The medium where the Bicoid gradient is formed and interpreted is very dynamic. Most notably, the number of nuclei changes over three orders of magnitude from fertilization, when Bicoid synthesis is initiated, to nuclear cycle 14 when most of the measurements were taken. We demonstrate that a model based on Bicoid diffusion and nucleocytoplasmic shuttling in the presence of the growing number of nuclei can account for most of the properties of the Bicoid concentration profile. Consistent with experimental observations, the Bicoid gradient in our model is established before nuclei migrate to the periphery of the embryo and remains stable during subsequent nuclear divisions.  相似文献   

4.
The Bicoid morphogen evolved approximately 150 MYA from a Hox3 duplication and is only found in higher dipterans. A major difference between dipteran species, however, is the size of the embryo, which varies up to 5-fold. Although the expression of developmental factors scale with egg length, it remains unknown how this scaling is achieved. To test whether scaling is accounted for by the properties of Bicoid, we expressed eGFP fused to the coding region of bicoid from three dipteran species in transgenic Drosophila embryos using the Drosophila bicoid cis-regulatory and mRNA localization sequences. In such embryos, we find that Lucilia sericata and Calliphora vicina Bicoid produce gradients very similar to the endogenous Drosophila gradient and much shorter than what they would have produced in their own respective species. The common shape of the Drosophila, Lucilia and Calliphora Bicoid gradients appears to be a conserved feature of the Bicoid protein. Surprisingly, despite their similar distributions, we find that Bicoid from Lucilia and Calliphora do not rescue Drosophila bicoid mutants, suggesting that that Bicoid proteins have evolved species-specific functional amino acid differences. We also found that maternal expression and anteriorly localization of proteins other than Bcd does not necessarily give rise to a gradient; eGFP produced a uniform protein distribution. However, a shallow gradient was observed using eGFP-NLS, suggesting nuclear localization may be necessary but not sufficient for gradient formation.  相似文献   

5.
Probing the limits to positional information   总被引:10,自引:0,他引:10  
Gregor T  Tank DW  Wieschaus EF  Bialek W 《Cell》2007,130(1):153-164
The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: the concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos. We show, through a combination of different experiments, that all of these quantities are approximately 10%. This agreement among different measures of accuracy indicates that the embryo is not faced with noisy input signals and readout mechanisms; rather, the system exerts precise control over absolute concentrations and responds reliably to small concentration differences, approaching the limits set by basic physical principles.  相似文献   

6.
Bicoid by the numbers: quantifying a morphogen gradient   总被引:3,自引:0,他引:3  
Gibson MC 《Cell》2007,130(1):14-16
Morphogen gradients are typically analyzed from static images of fixed embryonic tissues. Two papers in this issue of Cell now report live imaging of the Bicoid gradient in developing fruit fly embryos (Gregor et al., 2007a, 2007b). Their findings indicate that the gradient is highly reproducible from embryo to embryo and reveal that the nuclear dynamics of Bicoid are critical for maintaining precision within the gradient.  相似文献   

7.
Pre-steady-state decoding of the Bicoid morphogen gradient   总被引:2,自引:1,他引:1       下载免费PDF全文
Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule gene expression domains observed in response to alterations in bcd dosage.  相似文献   

8.
Embryogenesis relies on instructions provided by spatially organized signaling molecules known as morphogens. Understanding the principles behind morphogen distribution and how cells interpret locally this information remains a major challenge in developmental biology. Here, we introduce morphogen‐age measurements as a novel approach to test models of morphogen gradient formation. Using a tandem fluorescent timer as a protein age sensor, we find a gradient of increasing age of Bicoid along the anterior–posterior axis in the early Drosophila embryo. Quantitative analysis of the protein age distribution across the embryo reveals that the synthesis–diffusion–degradation model is the most likely model underlying Bicoid gradient formation, and rules out other hypotheses for gradient formation. Moreover, we show that the timer can detect transitions in the dynamics associated with syncytial cellularization. Our results provide new insight into Bicoid gradient formation and demonstrate how morphogen‐age information can complement knowledge about movement, abundance, and distribution, which should be widely applicable to other systems.  相似文献   

9.
Precision of the Dpp gradient   总被引:2,自引:0,他引:2  
  相似文献   

10.
Chen H  Xu Z  Mei C  Yu D  Small S 《Cell》2012,149(3):618-629
The homeodomain (HD) protein Bicoid (Bcd) is thought to function as a gradient morphogen that positions boundaries of target genes via threshold-dependent activation mechanisms. Here, we analyze 66 Bcd-dependent regulatory elements and show that their boundaries are positioned primarily by repressive gradients that antagonize Bcd-mediated activation. A major repressor is the pair-rule protein Runt (Run), which is expressed in an opposing gradient and is necessary and sufficient for limiting Bcd-dependent activation. Evidence is presented that Run functions with the maternal repressor Capicua and the gap protein Kruppel as the principal components of a repression system that correctly orders boundaries throughout the anterior half of the embryo. These results put conceptual limits on the Bcd morphogen hypothesis and demonstrate how the Bcd gradient functions within the gene network that patterns the embryo.  相似文献   

11.
12.
Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation.  相似文献   

13.
The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein degradation. However, currently such models cannot account for all known gradient characteristics. Recent work has proposed that bicoid mRNA spatial distribution is sufficient to produce the observed protein gradient, minimizing the role of protein transport. Here, we adapt a novel method of fluorescent in situ hybridization to quantify the global spatio-temporal dynamics of bicoid mRNA particles. We determine that >90% of all bicoid mRNA is continuously present within the anterior 20% of the embryo. bicoid mRNA distribution along the body axis remains nearly unchanged despite dynamic mRNA translocation from the embryo core to the cortex. To evaluate the impact of mRNA distribution on protein gradient dynamics, we provide detailed quantitative measurements of nuclear Bicoid levels during the formation of the protein gradient. We find that gradient establishment begins 45 minutes after fertilization and that the gradient requires about 50 minutes to reach peak levels. In numerical simulations of gradient formation, we find that incorporating the actual bicoid mRNA distribution yields a closer prediction of the observed protein dynamics compared to modeling protein production from a point source at the anterior pole. We conclude that the spatial distribution of bicoid mRNA contributes to, but cannot account for, protein gradient formation, and therefore that protein movement, either active or passive, is required for gradient formation.  相似文献   

14.
Seeing is believing: the bicoid morphogen gradient matures   总被引:6,自引:0,他引:6  
Ephrussi A  St Johnston D 《Cell》2004,116(2):143-152
  相似文献   

15.
Liu W  Niranjan M 《PloS one》2011,6(9):e24896
The Bicoid morphogen is amongst the earliest triggers of differential spatial pattern of gene expression and subsequent cell fate determination in the embryonic development of Drosophila. This maternally deposited morphogen is thought to diffuse in the embryo, establishing a concentration gradient which is sensed by downstream genes. In most model based analyses of this process, the translation of the bicoid mRNA is thought to take place at a fixed rate from the anterior pole of the embryo and a supply of the resulting protein at a constant rate is assumed. Is this process of morphogen generation a passive one as assumed in the modelling literature so far, or would available data support an alternate hypothesis that the stability of the mRNA is regulated by active processes? We introduce a model in which the stability of the maternal mRNA is regulated by being held constant for a length of time, followed by rapid degradation. With this more realistic model of the source, we have analysed three computational models of spatial morphogen propagation along the anterior-posterior axis: (a) passive diffusion modelled as a deterministic differential equation, (b) diffusion enhanced by a cytoplasmic flow term; and (c) diffusion modelled by stochastic simulation of the corresponding chemical reactions. Parameter estimation on these models by matching to publicly available data on spatio-temporal Bicoid profiles suggests strong support for regulated stability over either a constant supply rate or one where the maternal mRNA is permitted to degrade in a passive manner.  相似文献   

16.
17.

Background  

Patterning along the anterior-posterior (A-P) axis in Drosophila embryos is instructed by the morphogen gradient of Bicoid (Bcd). Despite extensive studies of this morphogen, how embryo geometry may affect gradient formation and target responses has not been investigated experimentally.  相似文献   

18.
A long standing question in developmental biology is how morphogen gradients establish positional information during development. Although the existence of gradients and their role in developmental patterning is no longer in doubt, the ability of cells to respond to different morphogen concentrations has been controversial. In the Drosophila wing disc, Hedgehog (Hh) forms a concentration gradient along the anterior-posterior axis and establishes at least three different gene expression patterns. In a recent study, we challenged the prevailing idea that Hh establishes positional information in a dose-dependent manner and proposed a model in which dynamics of the gradient, resulting from the Hh gene network architecture, determines pattern formation in the wing disc. In this Extra View, we discuss further the methodology used in this study, highlight differences between this and other models of developmental patterning, and also present some questions that remain to be answered in this system.Key words: Hedgehog, developmental patterning, morphogen, dynamics, mathematical modeling  相似文献   

19.
Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.  相似文献   

20.
The earliest models for how morphogen gradients guide embryonic patterning failed to account for experimental observations of temporal refinement in gene expression domains. Following theoretical and experimental work in this area, dynamic positional information has emerged as a conceptual framework to discuss how cells process spatiotemporal inputs into downstream patterns. Here, we show that diffusion determines the mathematical means by which bistable gene expression boundaries shift over time, and therefore how cells interpret positional information conferred from morphogen concentration. First, we introduce a metric for assessing reproducibility in boundary placement or precision in systems where gene products do not diffuse, but where morphogen concentrations are permitted to change in time. We show that the dynamics of the gradient affect the sensitivity of the final pattern to variation in initial conditions, with slower gradients reducing the sensitivity. Second, we allow gene products to diffuse and consider gene expression boundaries as propagating wavefronts with velocity modulated by local morphogen concentration. We harness this perspective to approximate a PDE model as an ODE that captures the position of the boundary in time, and demonstrate the approach with a preexisting model for Hunchback patterning in fruit fly embryos. We then propose a design that employs antiparallel morphogen gradients to achieve accurate boundary placement that is robust to scaling. Throughout our work we draw attention to tradeoffs among initial conditions, boundary positioning, and the relative timescales of network and gradient evolution. We conclude by suggesting that mathematical theory should serve to clarify not just our quantitative, but also our intuitive understanding of patterning processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号