首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Earlier, Folk &; Berg (1970a,b) described a class of mutants affecting the structural gene for glycyl-transfer RNA synthetase (glyS); their Gly phenotype (requirement for added glycine to minimal medium) was thought to result from a lowered affinity of the enzyme for glycine and consequently a reduced rate of esterification of glycine to tRNAGly at normal intracellular levels of glycine. Such mutants revert to a Gly+ phenotype at a high frequency (> 10−5) although the glyS mutant allele remains unchanged.  相似文献   

3.
4.
The transport of several metabolites is decreased in mutant strains of Escherichia coli (Met K, E4 and E40), which contain decreased levels of S-adenosylmethionine synthetase. The rates and extents of uptake for lysine, leucine, methionine, and α-methylglucoside in both whole cells and membrane vesicles isolated from these mutants are 2- to 10-fold lower than in corresponding preparations from wild-type cells, although proline uptake is normal. The addition of S-adenosylmethionine to cultures of strain E40 can partially restore the rate and extent of lysine uptake. Lysine transport is lower in mutant vesicles in the presence of either d-lactate, succinate, α-hydroxylbutyrate, or NADH even though these substrates are oxidized at rates comparable to those in wild-type vesicles. This suggests that the defect is not related to the ability of vesicles to oxidize electron donors, but is very likely related to the ability of mutant vesicles to couple respiration to lysine transport. In addition, temperature-induced efflux of α-methylglucoside phosphate and dinitrophenol-induced efflux of lysine are similar in both the mutant and wild-type membranes, indicating that the barrier properties of the membrane and the activity of the lysine carrier are normal.  相似文献   

5.
An Escherichia coli metK mutant, designated metK110, was isolated among spontaneous ethionine-resistant organisms selected at 42 degrees C. The S-adenosylmethionine synthetase activity of this mutant was present at lower levels than in the corresponding wild-type strain and was more labile than the wild-type enzyme when heated or dialyzed. A mixture of mutant and wild-type enzyme preparations had an activity equal to the sum of the component activities. These facts strongly suggest that the mutated gene in this strain is the structural gene for this enzyme. Genetic mapping experiments placed the metK110 mutation near or at the site of other known metK mutants (i.e., 63 min), confirming its designation as a metK mutant. A revised gene order has been established for this region, i.e., metC glc speC metK speB serA.  相似文献   

6.
The structural gene for histidyl-tRNA synthetase was localized to 53.8 min on the Escherichia coli genome. The gene order in this region was determined to be dapE-purC-upp-purG-(guaA, guaB)-hisS-glyA.  相似文献   

7.
8.
N S Datta  A K Hajra 《FEBS letters》1984,176(1):264-268
The nucleotide sequence of the lspA gene coding for lipoprotein signal peptidase of Escherichia coli was determined and the amino acid sequence of the peptidase was deduced from it. The molecular mass and amino acid composition of the predicted lipoprotein signal peptidase were consistent with those of the signal peptidase purified from cells harboring the lspA gene-carrying plasmid. The peptidase most probably has no cleavable signal peptide. The lspA gene was preceded by the ileS gene coding for isoleucyl-tRNA synthetase and the tandem termination codons of the ileS gene overlapped with the initiation codon of the lspA gene.  相似文献   

9.
The gene for Escherichia coli leucyl-tRNA synthetase leuS has been cloned by complementation of a leuS temperature sensitive mutant KL231 with an E.coli gene bank DNA. The resulting clones overexpress leucyl-tRNA synthetase (LeuRS) by a factor greater than 50. The DNA sequence of the complete coding regions was determined. The derived N-terminal protein sequence of LeuRS was confirmed by independent protein sequencing of the first 8 aminoacids. Sequence comparison of the LeuRS sequence with all aminoacyl-tRNA synthetase sequences available reveal a significant homology with the valyl-, isoleucyl- and methionyl-enzyme indicating that the genes of these enzymes could have derived from a common ancestor. Sequence comparison with the gene product of the yeast nuclear NAM2-1 suppressor allele curing mitochondrial RNA maturation deficiency reveals about 30% homology.  相似文献   

10.
phoS is the structural gene for the phosphate-binding protein, which is localized in periplasm and involved in active transport of phosphate in Escherichia coli. It is also a negative regulatory gene for the pho regulon, and the gene expression is inducible by phosphate starvation. The complete nucleotide sequence of the phoS gene was determined by the method of Maxam and Gilbert (A. M. Maxam and W. Gilbert, Methods Enzymol. 65:499-560, 1980). The amino acid sequences at the amino termini of the pre-PhoS and PhoS proteins and at the carboxy terminus of the PhoS protein were determined by using the purified proteins. Furthermore, the amino acid sequence of enzymatically digested peptide fragments of the PhoS protein was determined. The combined data established the nucleotide sequence of the coding region and the amino acid sequence of the pre-PhoS and the PhoS proteins. The pre-PhoS protein contains an extension of peptide composed of 25 amino acid residues at the amino terminus of the PhoS protein, which has the general characteristics of a signal peptide. The mature PhoS protein is composed of 321 amino acid residues, with a calculated molecular weight of 34,422, and lacks the disulfide bond and methionine. The regulatory region of phoS contains a characteristic Shine-Dalgarno sequence at an appropriate position preceding the translational initiation site, as well as three possible Pribnow boxes and one -35 sequence. the nucleotide sequence of the regulatory region of phoS was compared with those of phoA and phoE, the genes constituting the pho regulon.  相似文献   

11.
12.
The nucleotide sequence of the dUTPase structural gene, dut, of Escherichia coli has been determined. The DNA sequence predicts a polypeptide chain of 150 amino acid residues (mol. wt. 16 006) corresponding in size and composition to the purified dUTPase subunit. In a tentative promoter region preceding the dut gene, the -35 and -10 regions are separated by a SacI (SstI) site. Cloning of the dut gene utilization this SacI site was previously shown to reduce dut expression dramatically. The nucleotide sequence also contains a 210-codon open reading frame 106 bp downstream of dut and co-directional with dut. Previous protein synthesis experiments using dut plasmids allocated the gene of a polypeptide of mol. wt. 23 500 to this DNA region. The open reading frame thus may correspond to a protein of unknown function co-transcribed with the dut gene.  相似文献   

13.
Studies on the role of the metK gene product of Escherichia coli K-12   总被引:2,自引:0,他引:2  
  相似文献   

14.
Cloning of the gene for Escherichia coli glutamyl-tRNA synthetase   总被引:1,自引:0,他引:1  
H Sanfa?on  S Levasseur  P H Roy  J Lapointe 《Gene》1983,22(2-3):175-180
The structural gene for the glutamyl-tRNA synthetase of Escherichia coli has been cloned in E. coli strain JP1449, a thermosensitive mutant altered in this enzyme. Ampicillin-resistant and tetracycline-sensitive thermoresistant colonies were selected following the transformation of JP1449 by a bank of hybrid plasmids containing fragments from a partial Sau3A digest of chromosomal DNA inserted into the BamHI site of pBR322. One of the selected clones, HS7611, has a level of glutamyl-tRNA synthetase activity more than 20 times higher than that of a wild-type strain. The overproduced enzyme has the same molecular weight and is as thermostable as that of a wild-type strain, indicating that the complete structural gene is present in the insert. These characteristics were lost by curing this clone of its plasmid with acridine orange, and were transferred with high efficiency to the mutant strain JP1449 by transformation with the purified plasmid. A physical map of the plasmid, which contains an insert of about 2.7 kb in length, is presented.  相似文献   

15.
16.
17.
The tryptophanase structural gene, tnaA, of Escherichia coli K-12 was cloned and sequenced. The size, amino acid composition, and sequence of the protein predicted from the nucleotide sequence agree with protein structure data previously acquired by others for the tryptophanase of E. coli B. Physiological data indicated that the region controlling expression of tnaA was present in the cloned segment. Sequence data suggested that a second structural gene of unknown function was located distal to tnaA and may be in the same operon. The pattern of codon usage in tnaA was intermediate between codon usage in four of the ribosomal protein structural genes and the structural genes for three of the tryptophan biosynthetic proteins.  相似文献   

18.
19.
S-adenosylmethionine (SAM) synthetase (EC 2.5.1.6) catalyzes the synthesis of S-adenosylmethionine using l-methionine and ATP as substrates. SAM synthetase gene (metE) from Bacillus subtilis was cloned and over-expressed, for the first time, in the heterologus host Escherichia coli as an active enzyme. Size-exclusion chromatography (SEC) revealed a molecular weight of ~180 kDa, suggesting that the enzyme is a homotetramer stabilized by non-covalent interactions. SAM synthetase exhibited optimal activity at pH 8.0 and 45 degrees C with the requirement of divalent cation Mg(2+), and stimulated by the monovalent cation K(+). The enzyme followed sequential mechanism with a V(max) of 0.362 micromol/min/mg, and a K(m) of 920 microM and 260 microM for ATP and l-methionine, respectively. The urea-induced unfolding equilibrium of the recombinant enzyme revealed a multistate process, comprising partially unfolded tetramer, structural dimer, structural monomer and completely unfolded monomer, as evidenced by intrinsic and extrinsic fluorescence, circular dichroism (CD) and SEC. Absence of trimer in the SEC implicates that the enzyme is a dimer of dimer. Concordance between results of SEC and enzyme activity in the presence of urea amply establishes that tetramer alone with intersubunit active site(s) exhibits enzyme activity.  相似文献   

20.
The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP: L -methionine S-adenosyltransferase). In Escherichia coli and Sal-monella typhimunum numerous studies have located a structural gene (metK) for this enzyme at 63min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E. coli by DNA hybridization experiments with metK as the probe; we denote this gene as metX. The metX gene is located adjacent to metK with the gene order speA metK metX speC. The metK and metX genes are separated by ~0.8kb. The metK and the metX genes are oriented convergently as indicated by DNA hybridization experiments using sequences from the 5′ and 3′ ends of metK. The metK gene product is detected immunochemically only in cells growing in minimal media, whereas the metX gene product is detected immunochemically in cells grown in rich media at all growth phases and in stationary phase in minimal media. Mutants in metK or metX were obtained by insertion of a kanamycin resistance element into the coding region of the cloned metK gene (metK:: kan), followed by use of homologous recombination to disrupt the chromosomal metK or metX gene. The metK::kan mutant thus prepared does not grow on minimal media but does grow normally on rich media, while the corresponding metX::kan mutant does not grow on rich media although it grows normally on minimal media. These results indicate that metK expression is essential for growth of E. coli on minimal media and metX expression is essential for growth on rich media. Our results demonstrate that Ado Met synthetase has an essential cellular and/or metabolic function. Furthermore, the growth phenotypes, as well as immunochemical studies, demonstrate that the two genes that encode S-adenosylmethionine synthetase isozymes are differentially regulated. The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号