首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extraction of human caudate nucleus under high-ionic-strength conditions solubilized 20-30% of total acetylcholinesterase (AChE) activity. Density gradient centrifugation revealed monomeric (5.0 S) and tetrameric (11.0 S) enzyme species. The purified, tetrameric salt-soluble (SS) AChE sedimented at 10.6 S and did not bind detergents. It showed an immunochemical reaction of identity with the detergent-soluble (DS) AChE species from human caudate nucleus and human erythrocytes, but did not cross-react with antibodies raised against human serum cholinesterase. The remaining activity was solubilized under low-ionic-strength conditions in the presence of 1.0% Triton X-100. The purified tetrameric, DS-AChE sedimented at 10.0 S as detergent-protein mixed micelle and on extensive removal of the detergent this enzyme formed defined aggregates by self-micellarization. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed that the salt-soluble and detergent-soluble tetrameric enzyme species both contained a heavy and a light dimer; under reducing conditions mainly one band corresponding to the light subunit was seen. Molecular weights of 300,000 dalton and 280,000 dalton were calculated for SS-AChE and DS-AChE, respectively. Limited digestion of DS-AChE with proteinase K led to isolation of an enzyme that no longer bound detergents and lacked the intersubunit disulfide bridges.  相似文献   

2.
Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and >250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AchE possess hydrophobic domain(s) different from the 20 kD peptide already described.Abbreviations used AChE acetylcholinesterase - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TMA tetramethylammonium chloride  相似文献   

3.
1. Coding sequences for the human acetylcholinesterase (HuAChE; EC 3.1.1.7) hydrophilic subunit were subcloned in an expression plasmid vector under the control of cytomegalovirus IE gene enhancer-promoter. The human embryonic kidney cell line 293, transiently transfected with this vector, expressed catalytically active acetylcholinesterase. 2. The recombinant gene product exhibits biochemical traits similar to native "true" acetylcholinesterase as manifested by characteristic substrate inhibition, a Km of 117 microM toward acetylthiocholine, and a high sensitivity to the specific acetylcholinesterase inhibitor BW284C51. 3. The transiently transfected 293 cells (100 mm dish) produce in 24 hr active enzyme capable of hydrolyzing 1500 nmol acetylthiocholine per min. Eighty percent of the enzymatic activity appears in the cell growth medium as soluble acetylcholinesterase; most of the cell associated activity is confined to the cytosolic fraction requiring neither detergent nor high salt for its solubilization. 4. The active secreted recombinant enzyme appears in the monomeric, dimeric, and tetrameric globular hydrophilic molecular forms. 5. In conclusion, the catalytic subunit expressed from the hydrophilic AChE cDNA species has the inherent potential to be secreted in the soluble globular form and to generate polymorphism through self-association.  相似文献   

4.
Abstract: Cercopithecus monkey brain acetylcholinesterase (AChE; EC 3.1.1.7) consists of about 15% hydrophilic, salt-soluble enzyme and 83% amphiphilic, detergent-soluble enzyme. Sucrose density gradient centrifugation showed that hydrophilic, salt-soluble AChE was composed of about 85% tetramer (10.3S) and 15% monomer (3.3S). In amphiphilic, detergent-soluble AChE, 85% tetramer (9.7S), 10% dimer (5.7S), and 5% monomer (3.2S) were seen. The enzyme is N -glycosylated, and no O-linked carbohydrate could be detected. Use of two monoclonal antibodies, one directed against the catalytic subunit and the other against the hydrophobic anchor, gave new insights into the subunit assembly of brain AChE. It is shown that in tetrameric AChE, not all of the subunits are disulfide-bonded and that two populations of tetramers exist, one carrying one and the other carrying two hydrophobic anchors.  相似文献   

5.
We show that human and bovine dopamine beta-hydroxylases (DBH) exist under three main molecular forms: a soluble nonamphiphilic form and two amphiphilic forms. Sedimentation in sucrose gradients and electrophoresis under nondenaturing conditions, by comparison with acetylcholinesterase (AChE), suggest that the three forms are tetramers of the DBH catalytic subunit and bind either no detergent, one detergent micelle, or two detergent micelles. By analogy with the Gna4 and Ga4 AChE forms, we propose to call the nonamphiphilic tetramer Dna4 and the amphiphilic tetramers Da4I and Da4II. In addition to the major tetrameric forms, DBH dimers occur as very minor species, both amphiphilic and nonamphiphilic. Reduction under nondenaturing conditions leads to a partial dissociation of tetramers into dimers, retaining their amphiphilic character. This suggests that the hydrophobic domain is not linked to the subunits through disulfide bonds. The two amphiphilic tetramers are insensitive to phosphatidylinositol phospholipase C, but may be converted into soluble DBH by proteolysis in a stepwise manner; Da4II----Da4I----Dna4. Incubation of soluble DBH with various phospholipids did not produce any amphiphilic form. Several bands corresponding to the catalytic subunits of bovine DBH were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but this multiplicity was not simply correlated with the amphiphilic character of the enzyme. In the case of human DBH, we observed two bands of 78 and 84 kDa. As previously reported by others, the presence of the heavy subunit characterizes the amphiphilic forms of the enzyme. We discuss the nature of the hydrophobic domain, which could be an uncleaved signal peptide, and the organization of the different amphiphilic and nonamphiphilic DBH forms. We present two models in which dimers may possess either one hydrophobic domain or two domains belonging to each subunit; in both cases, a single detergent micelle would be bound per dimer.  相似文献   

6.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

7.
Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.  相似文献   

8.
Both salt-soluble and detergent-soluble rat brain globular acetylcholinesterases (SS- and DS- AChE EC 3.1.1.7) are amphiphiles, as shown by detergent dependency of enzymatic activity and binding to liposomes. Proteinase K and papain treatment transformed SS-AChE and DS-AChE into forms that, in absence of detergent, no longer aggregated nor bound to liposomes. In contrast, phosphatidylinositol-specific phospholipase C had no effect on these properties. Labeling DS-AChE with 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine ([125I]TID) revealed, by polyacrylamide gel electrophoresis under reducing conditions, one single band of 69 kD apparent molecular mass. The same pattern was previously obtained with Bolton and Hunter reagent-labeled enzyme (1). Proteinase K treatment transformed the 11 S [125I]TID labeled AChE into a 4 S form which no longer showed125I-radioactivity and was unable to bind to liposomes. These results are compatible with the existence of a hydrophobic segment present both on salt-soluble and detergent-soluble 11 S AChE as well as on the minor forms 4 S and 7 S. This segment is not linked to the catalytic subunits by disulfide bounds in contrast to the 20 kD non-catalytic subunit described by Inestrosa et al. (2).Abbreviations used AChE acetylcholinesterase - SS-AChE salt-soluble AChE - DS-AChE detergent-soluble AChE - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - PC-Chol-SA liposomes phosphatidylcholine-cholesterol-stearylamine liposomes - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - 125I-TID 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine  相似文献   

9.
Abstract: Acetylcholinesterase (AChE) is secreted from muscle and nerve cells and associates as multimers through intermolecular covalent and noncovalent bonds. The amino acid sequence of the C-terminus is thought to play an important role in these interactions. We generated mutants in the C-terminus of the catalytic T-subunit of chicken AChE to determine the importance of this region to oligomerization and to the amphipathic character of the protein. Wild-type recombinant chicken AChE secreted from human embryonic kidney 293 cells was assembled into dimers and tetramers exclusively. Mutants lacking the C-terminal Cys764, the only cysteine involved in interchain disulfide bonds, showed lower but significant levels of the secreted dimeric and tetrameric forms. A truncated mutant, lacking the C-terminal 39 amino acids, exhibited a severe decrease in content of the multimeric forms, yet small amounts of the dimer were detectable. The amphipathic character was dependent on the state of oligomerization. When analyzed by sucrose gradients, the sedimentation of tetramers was not affected by detergent, but monomers and dimers sedimented more slowly in the presence of detergent. Most of the recombinant wild-type enzyme, shown to be dimeric and tetrameric by sedimentation analysis, was monomeric when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, indicating that much of the secreted oligomeric AChE was not disulfide bonded. These data suggest that disulfide bonding of Cys764 is not required for the catalytic subunit of chicken AChE to form oligomers and that regions outside of the C-terminus contribute to the hydrophobic interactions that are important for stabilizing the oligomeric forms.  相似文献   

10.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

11.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

12.
Abstract: The hydrophilic, salt-soluble (SS) form of acetylcholinesterase (AChE) from bovine brain caudate nucleus exists mainly as a tetramer sedimenting at 10.3S (∼40%), and a monomer sedimenting at 3.4S (∼60%). The enzyme is N -glycosylated and contains similar HNK-1 carbohydrates as detergent-soluble (DS) AChE. No O-linked carbohydrates could be detected. Amino acid sequencing showed that the N terminus of SS-AChE is identical to that of DS-AChE. In tetrameric SS-AChE, two pairs of disulfide-linked dimers are associated by hydrophobic forces located in the C terminus. Antibodies were raised against a peptide identical to the last 10 amino acid residues of bovine brain DS-AChE. The peptide included the sequence of residues 574–583 (H-Tyr-Ser-Lys-Gln-Asp-Arg-Cys-Ser-Asp-Leu-OH) of the enzyme. The antibodies cross-reacted with tetrameric, but not with monomeric, SS-AChE, showing that in the latter form, the C terminus is truncated. Limited proteolysis of tetrameric SS-AChE at the C terminus led to the formation of an enzymatically active monomer, which did not react with anti-C-terminal antibody. Although the DS form of AChE contains a structural subunit that serves as membrane anchor, no anchor was detected in SS-AChE. Enzyme antigen immunoassays showed that SS-AChE reacted with all monoclonal antibodies directed against the catalytic subunit of DS-AChE, but not with monoclonal antibodies targeting the membrane-anchored subunits. From our results, we conclude that SS-AChE utilizes the same alternative splicing pattern as DS-AChE, leading to tetrameric SS-AChE devoid of the membrane anchor. The active monomer of SS-AChE is most likely derived from tetrameric forms by limited postsynthetic proteolysis.  相似文献   

13.
We analyzed the molecular forms of acetylcholinesterase (AChE) in the nematode Steinernema carpocapsae. Two major AChEs are involved in acetylcholine hydrolysis. The first class of AChE is highly sensitive to eserine (IC50 = 0.05 microM). The corresponding molecular forms are: an amphiphilic 14S form converted into a hydrophilic 14.5S form by mild proteolysis and two hydrophilic 12S and 7S forms. Reduction of the amphiphilic 14S form with 10 mM dithiothreitol produces hydrophilic 7S and 4S forms, indicating that it is an oligomer of hydrophilic catalytic subunits linked by disulfide bond(s) to a hydrophobic structural element that confers the amphiphilicity to the complex. Sedimentation coefficients suggest that 4S, 7S, 12S forms correspond to hydrophilic monomer, dimer, tetramer and that the 14S form is also a tetramer linked to one structural element. The second class of AChE is less sensitive to eserine (IC50 = 0.1 mM). Corresponding molecular forms are hydrophilic and amphiphilic 4S forms (monomers) and a major amphiphilic 7S form converted into a hydrophilic dimer by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C. This amphiphilic 7S form thus possesses a glycolipid anchor. It appears that Steinernema (a very primitive invertebrate) presents AChEs with two types of membrane association that closely resemble those described for amphiphilic G2 and G4 forms of AChE in more evolved animals.  相似文献   

14.
The native molecular forms of acetylcholinesterase (AChE) present in adult Drosophila heads were characterized by sedimentation analysis in sucrose gradients and by nondenaturing electrophoresis. The hydrophobic properties of AChE forms were studied by comparing their migration in the presence of Triton X100, 10-oleyl ether, or sodium deoxycholate, or in the absence of detergent. We examined the polymeric structure of AChE forms by disulfide bridge reduction. We found that the major native molecular form is an amphiphilic dimer which is converted into hydrophilic dimer and monomer on autolysis of the extracts, or into a catalytically active amphiphilic monomer by partial reduction. The latter component exists only as trace amounts in the native enzyme. Two additional minor native forms were identified as hydrophilic dimer and monomer. Although a significant proportion of AChE was only solubilized in high salt, following extractions in low salt, this high salt-soluble fraction contained the same molecular forms as the low salt-soluble fractions: thus, we did not detect any molecular form resembling the asymmetric forms of vertebrate cholinesterases.  相似文献   

15.
Abstract: Two acetylcholinesterases (AChEs), AChE1 and AChE2, differing in substrate specificity and in some aspects of inhibitor sensitivity, have been characterized in the mosquito Culex pipiens . The results of ultracentrifugation in sucrose gradients and nondenaturing gel electrophoresis of AChE activity peak fractions show that each AChE is present as two molecular forms: one amphiphilic dimer possessing a glycolipid anchor and one hydrophilic dimer that does not interact with nondenaturing detergents. Treatment by phosphatidylinositol-specific phospholipase C converts each type of amphiphilic dimer into the corresponding hydrophilic dimer. Molecular forms of AChE1 have a lower electrophoretic mobility than those of AChE2. However, amphiphilic dimers and hydrophilic dimers have similar sedimentation coefficients (5.5S and 6.5S, respectively). AChE1 and AChE2 dimers, amphiphilic or hydrophilic, resist dithiothreitol reduction under conditions that allow reduction of Drosophila AChE dimers. In the insecticide-susceptible strain S-LAB, AChE1 is inhibited by 5 × 10−4 M propoxur (a carbamate insecticide), whereas AChE2 is resistant. All animals are killed by this concentration of propoxur, indicating that only AChE1 fulfills the physiological function of neurotransmitter hydrolysis at synapses. In the insecticide-resistant strain, MSE, there is no mortality after exposure to 5 × 10−4 M propoxur: AChE2 sensitivity to propoxur is unchanged, whereas AChE1 is now resistant to 5 × 10−4 M propoxur. The possibility that AChE1 and AChE2 are products of tissue-specific posttranslational modifications of a single gene is discussed, but we suggest, based on recent results obtained at the molecular level in mosquitoes, that they are encoded by two different genes.  相似文献   

16.
Three forms of acetylcholinesterase (AChE) were detected in samples of the bivalve mollusc Mytilus galloprovincialis collected in sites of the Adriatic sea. Apart from the origin of the mussels, two spontaneously soluble (SS) AChE occur in the hemolymph and represent about 80% of total activity, perhaps hydrolyzing metabolism-borne choline esters. These hydrophilic enzymes (forms A and B) copurified by affinity chromatography (procainamide-Sepharose gel) and were separated by sucrose gradient centrifugation. They are, respectively, a globular tetramer (11.0-12.0 S) and a dimer (6.0-7.0 S) of catalytic subunits. The third form, also purified from tissue extracts by the same affinity matrix, proved to be an amphiphilic globular dimer (7.0 S) with a phosphatidylinositol tail giving cell membrane insertion, detergent (Triton X-100, Brij 96) interaction and self-aggregation. Such an AChE is likely functional in cholinergic synapses. All three AChE forms show a good substrate specificity and are inactive on butyrylthiocholine. Studies with inhibitors showed low inhibition by eserine and paraoxon, especially on SS forms, high sensitivity to 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide (BW284c51) and no inhibition with propoxur and diisopropylfluorophosphate (DFP). The ChE forms in M. galloprovincialis are possibly encoded by different genes. Some kinetic features of these enzymes suggest a genetic polymorphism.  相似文献   

17.
Acetylcholinesterase (AChE) from housefly heads was purified by affinity chromatography. Three different native forms were separated by electrophoresis on polyacrylamide gradient gels. Two hydrophilic forms presented apparent molecular weights of 75,000 (AChE1) and 150,000 (AChE2). A third component (AChE3) had a migration that depended on the nature and concentration of detergents. In the presence of sodium deoxycholate in the gel, AChE3 showed an apparent molecular weight very close to that of AChE2. Among the three forms, AChE3 was the only one found in purified membranes. The relationships among the various forms were investigated using reduction with 2-mercaptoethanol or proteolytic treatments. Such digestion converted purified AChE3 into AChE2 and AChE1, and reduction of AChE3 and AChE2 by 2-mercaptoethanol gave AChE1, in both cases with a significant loss of activity. These data indicate that the three forms of purified AChE may be classified as an active hydrophilic monomeric unit (G1) plus hydrophilic and amphiphilic dimers. These two components were termed G2s and G2m, where "s" refers to soluble and "m" to membrane bound.  相似文献   

18.
Attempts were made to solubilize acetylcholinesterase (AChE) from microsomal membranes isolated from rabbit white muscle. The preparative procedure included a step in which the microsomes were incubated in a solution containing high salt concentration (0.6 M KCl). About 15% of the total enzyme activity could be solubilized with dilute buffer. Addition of EDTA (1 mM), EGTA (1 mM) or NaCl (0.5 and 1 M) to the extraction buffer did not improve the solubilization yield. Several non-ionic detergents and biliary salts were then used to bring the enzyme into solution. Triton X-100, C12E9 (dodecylnonaethylenglycol monoether) and biliary salt, above their critical micellar concentration, proved to be very effective as solubilizing agents. The occurrence of multiple molecular forms in detergent-soluble AChE was investigated by means of molecular sieving, centrifugation analysis, and slab gel electrophoresis. Experiments on gel filtration showed that, during the process, half of the enzyme was transformed into aggregates, the rest of the activity appearing as peaks with Stokes radii ranging from 3.7 to 7.9 nm. Both ionic strength and detergent nature modify the number and relative proportion of these peaks. Centrifugation analysis of Triton-saline-soluble AChE yielded molecular forms of 4.8S, 10–11S, and 13.5S, whereas deoxycholate extracts revealed species of 4.8S, 10S, and 15S, providing that gradients were prepared with 0.5 M NaCl. In the absence of salt, forms of 6.5–7.5S, 10S, and 15S were measured. The lightest species was always the predominant form. Slab gel electrophoresis showed several bands (68,000–445,000). The 4.8S component only yielded bands of 65,000–70,000. The results suggest that the monomeric form of AChE (4.8S), the most abundant species in muscle microsomes, has a Stokes radius of 3.3 nm and a molecular weight in the range of 70,000.  相似文献   

19.
The distribution of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) molecular forms and their solubility characteristics were examined, using density gradient centrifugation, in various regions of the postmortem human CNS. Total AChE activity varied extensively (50-fold) among the regions investigated, being highest in the telencephalic subcortical structures (caudate nucleus and nucleus of Meynert); intermediate in the substantia nigra, cerebellum, and spinal cord; and least in the fornix and cortical regions (hippocampus and temporal and parietal cortex). Total BChE activity was, in contrast, much more evenly distributed, with only a threefold variation between the regions studied. Although the patterns of molecular forms of each enzyme were broadly similar among the different areas, regional variations in the distribution and abundance of the various forms of AChE were much greater than those of BChE. Thus, although the tetrameric G4 form of AChE constituted the majority of the total AChE activity in all regions examined, the ratio of the G4 form to the monomeric G1 form, the latter of which constituted the majority of the remaining activity, varied markedly, ranging from 21 in the caudate nucleus to 1.7 in the temporal cortex. In addition to the G4 and G1 forms of AChE, the dimeric G2 form was observed in the nucleus of Meynert and a fast-sedimenting (16S) species was found in samples of both the parietal cortex and spinal cord. In contrast, the G4 and G1 forms of BChE were the only molecular species observed in the different areas and the G4:G1 ratio varied from 3.3 in the substantia nigra to 0.9 in the temporal cortex. Regarding the solubility characteristics of the individual AChE and BChE molecular forms, the majority of the G4 form of AChE was extractable only in the presence of detergent, indicating a predominantly membrane-bound localization of this species. The smaller AChE forms (G1 and G2) and both the G1 and G4 forms of BChE were all relatively evenly distributed between soluble and membrane-bound species. These findings are discussed in relation to neurochemical and neuroanatomical, particularly cholinergic, features of the regions examined.  相似文献   

20.
We report an analysis of the solubility and hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. We distinguish globular nonamphiphilic forms (Gna) from globular amphiphilic forms (Ga). The Ga forms bind micelles of detergent, as indicated by the following properties. They are converted by mild proteolysis into nonamphiphilic derivatives. Their Stokes radius in the presence of Triton X-100 is approximately 2 nm greater than that of their lytic derivatives. The G2a forms fall in two classes. Class I contains molecules that aggregate in the absence of detergent, when mixed with an AChE-depleted Triton X-100 extract from electric organ. AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which is also detectable in detergent-soluble (DS) extracts of electric lobes and spinal cord. Class II forms never aggregate but only present a slight shift in sedimentation coefficient, in the presence or absence of detergent. This class contains the AChE G2a forms of plasma and of the low-salt-soluble (LSS) fractions from spinal cord and electric lobes. The heart possesses a BuChE G2a form of class II in LSS extracts, as well as a similar G1a form. G4a forms of AChE, which are solubilized only in the presence of detergent and aggregate in the absence of detergent, represent a large proportion of cholinesterase in DS extracts of nerves and spinal cord, together with a smaller component of G4a BuChE. These forms may be converted to nonamphiphilic derivatives by Pronase. Nonaggregating G4a forms exist at low levels in the plasma (BuChE) and in LSS extracts of nerves (BuChE) and spinal cord (AChE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号