首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
5.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

6.
7.
8.
Genomic methylation patterns are established during maturation of primordial germ cells and during gametogenesis. While methylation is linked to DNA replication in somatic cells, active de novo methylation and demethylation occur in post-replicative spermatocytes during meiotic prophase (1). We have examined differentiating male germ cells for alternative forms of DNA (cytosine-5)-methyltransferase (DNA MTase) and have found a 6.2 kb DNA MTase mRNA that is present in appreciable quantities only in testis; in post-replicative pachytene spermatocytes it is the predominant form of DNA MTase mRNA. The 5.2 kb DNA MTase mRNA, characteristic of all somatic cells, was detected in isolated type A and B spermatogonia and haploid round spermatids. Immunobolt analysis detected a protein in spermatogenic cells with a relative mass of 180,000-200,000, which is close to the known size of the somatic form of mammalian DNA MTase. The demonstration of the differential developmental expression of DNA MTase in male germ cells argues for a role for testicular DNA methylation events, not only during replication in premeiotic cells, but also during meiotic prophase and postmeiotic development.  相似文献   

9.
A germ cell nuclear antigen with approximately 44-kDa molecular weight was identified by a novel monoclonal antibody designated as Mab 2F2 from the library we have accumulated against rat testicular cells. In immature 20-day-old and adult rat testis the recognized antigen was expressed in the nuclei of early meiotic cells from preleptotene to early pachytene spermatocytes exhibiting a stage-specific appearance in the cycle of the seminiferous epithelium. The immunoreactivity was clearly associated with the meiotic chromosomes. The antigen was not detected in the late pachytene spermatocytes and more advanced stages of spermatogenesis. No labeling was observed in spermatogonia and somatic Sertoli and Leydig cells. The pattern of expression of the recognized antigen during early meiotic stages of spermatogenesis but not in mitotically dividing spermatogonia could strengthen its possible role in meiotic division.  相似文献   

10.
We have cloned cDNA of a testis-specific histone, TH2B (a variant of H2B), and rat somatic H2B gene to investigate regulation of testis-specific histone genes during rat spermatogenesis. The amino acid sequences deduced from DNA sequences show extensive sequence divergence in the N-terminal third of the two histones. The rest is highly conserved. One cysteine residue was found in TH2B. No cysteine is present in somatic histones except in H3 histone. We investigated the expression of TH2B and H2B genes using the regions of sequence divergence as hybridization probes. The TH2B gene is expressed only in the testis, and the expression of this gene is detected 14 days after birth, reaching a maximum at Day 20. The level of H2B mRNA shows a reciprocal pattern. This contrasting pattern can be explained by the gradually changing proportion of spermatogonia and spermatocytes with testicular maturation. In situ cytohybridization studies show that H2B gene is expressed primarily in proliferating spermatogonia and preleptotene spermatocytes, whereas TH2B gene is expressed exclusively in pachytene spermatocytes which first appear in testis about 14 days after birth. H2B and TH2B genes appear to be ideal markers for the study of proliferation and differentiation events in spermatogenesis and their regulatory mechanisms.  相似文献   

11.
12.
13.
14.
15.
16.
Bcl-w, a prosurvival member of the Bcl-2 family, is essential for spermatogenesis. However, the mechanisms by which Bcl-w participates in the regulation of apoptosis in the testis are largely unknown. To explore the potential role of Bcl-w in the regulation of apoptosis in the testis, the expression of Bcl-w mRNA and protein during testicular development and spermatogenesis, the dimerization with the proapoptosis members of the Bcl-2 family, and the responses to hormonal stimulation in vitro and apoptosis-inducing signals in vivo were investigated. Both Bcl-w mRNA and protein were detected in Sertoli cells, spermatogonia, and spermatocytes, as well as in Leydig cells. The steady-state levels of Bcl-w mRNA and protein were much higher in Sertoli cells than in spermatogonia and spermatocytes. In the adult rat testis, both Bcl-w mRNA and protein in Sertoli cells displayed a stage-specific expression pattern. Bcl-w could form complexes with Bax and Bak but not with Bad. Bax and Bak were immunohistochemically localized to the same cell types as Bcl-w, but with higher expression levels in spermatocytes and spermatogonia than in Sertoli cells. FSH could up-regulate Bcl-w mRNA levels in the seminiferous tubules cultured in vitro, whereas no effect was observed when testosterone was applied. Three animal models that display spermatogonial apoptosis induced by blockade of stem cell factor/c-kit interaction by a function-blocking anti-c-kit antibody, spermatocyte apoptosis induced by methoxyacetic acid, and apoptosis of spermatogonia, spermatocytes, and spermatids induced by testosterone withdrawal after ethylene dimethane sulfonate treatment were employed to check the changes of Bcl-w, Bax, and Bak protein levels during apoptosis of specific germ cells. In all three models, the ratios of Bax/Bcl-w and Bak/Bcl-w were significantly elevated. The present study suggests that Bcl-w is an important prosurvival factor of Sertoli cells, spermatogonia, and spermatocytes and participates in the regulation of apoptosis by binding proapoptotic factors Bax and Bak. The ratios of Bax/Bcl-w and Bak/Bcl-w may be decisive for the survival of Sertoli cells, spermatogonia, and spermatocytes.  相似文献   

17.
GP90-MC301, a 90-kDa glycoprotein recognized by the monoclonal antibody MC301, is a reliable stage-specific marker for preleptotene to pachytene spermatocytes in adult rat testes. In this study we confirmed that the glycoprotein is also useful as a marker for germ cells in prenatal and postnatal testes. Immunohistochemical analysis showed a dramatic change in GP90-MC301 expression in germ cells during testis development. Strong expression was detected in primordial germ cells at embryonic day (E) 13 and in gonocytes at E16, and the expression was then markedly reduced at around the time (E18) gonocytes undergo G1/G0 arrest, and was not restored in gonocytes or spermatogonia afterward. Thereafter, it reappeared in primary spermatocytes in the prepubertal period. Testicular somatic cells such as Sertoli cells, Leydig cells, and peritubular myoid cells expressed GP90-MC301 during specific periods which were largely correlated with periods of active proliferation of these testicular somatic cells. Western blotting showed that GP90-MC301 was expressed during testis development without a change in its molecular size. Thus, GP90-MC301 is potentially useful for the analysis of not only spermatogenesis but also early testis development.  相似文献   

18.
The effect of the mutation for white belly spot controlled by the dominant gene W on spermatogenesis in mice was examined by experimental cryptorchidism and its surgical reversal. The course of spermatogenesis from spermatogonia to spermatid was normal in intact testes of W/+ mice. In cryptorchid testes, there was no difference in the number and activity of Type A spermatogonia between the testes of W/+ and +/+ mice, in mitotic and labelling indices. Although surgical reversal of the cryptorchid testis resulted in regenerative differentiation of germ cells in both genotypes, the recovery of cell differentiation in the W/+ testis was slower than in the +/+ testis. There were fewer germ cells, such as intermediate-Type B spermatogonia or more advanced ones, in W/+ testes. On Day 17 after surgical reversal, cell associations in W/+ testes were abnormal and the numbers of intermediate-Type B spermatogonia, spermatocytes and spermatids were approximately 70, 50 and 15%, respectively, of those in +/+ testes. These results indicate that the W gene affects spermatogenic cell differentiation in adult mice.  相似文献   

19.
20.
Initiation and progression of meiosis was followed in dispersed rat testicular cells by flow cytofluorometry and cytology. The DNA content of dissociated testicular cells of rats 6--30 days old, killed at daily intervals, was analysed by flow cytofluorometry using propidium iodide as a DNA-specific and quantitative fluorochrome. Testicular cells of a 6-day-old rat showed one peak of fluorescence. A second peak, at twice the modal channel number, appeared in testicular cells of 9-day-old animals. The number of cells under this peak increased progressively with age. A third peak, at half the channel number of the original one, appeared at 20 days and accounted for an increasing proportion of cells in testes taken from older rats. Cytological examination of the testicular tissue used for flow cytofluorometric analysis showed that preleptotene spermatocytes first appeared at 8 days after birth. Spermatids were first observed cytologically at 20 days after birth. The close temporal appearance of the fluorescence peaks with that of spermatocytes and spermatids, and the close association of the frequency of diploid and tetraploid cells as derived by flow cytofluorometry and cytology, indicated that the fluorescence peaks correspond--in order of increasing fluorescence--to spermatids, spermatogonia and somatic cells, and to spermatocytes. This conclusion was re-examined by analysing the ploidy levels of testicular cells of hypophysectomized or estradiol-treated by flow cytofluorodmetry. There was a loss of the haploid and tetraploid peaks subsequent to hypophysectomy. Estradiol dipropionate-treated rats, given weekly injections starting at 7 days of age, showed no appearance of the haploid peak and the regression of the tetraploid peak after an initial and transitory appearance. These results indicate that changes in ploidy levels that accompany the progression of meiosis in the testis were reflected in the sequential appearance of three fluorescence peaks as detected by flow cytofluorometry. The close correlation between the frequency of cell types as obtained by cytology and flow cytofluorometry indicates that the latter is a sensitive method for studying selected aspects of spermatogenesis in dissociated testicular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号