首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu (II) — poly (L-arginine) (PLA) complexes have been studied using potentiometric titrations, optical absorption and circular dichroism spectra. Three different complexes have been observed. The first one (complex I) is formed up to pH 8 and results from the coordination of two guanidinium groups to the metal ion. The second and third complexes (complexes IIA and IIB) are formed between pH 8 and 11, in different proportions which are dependent on PLA: Cu molar ratio. In these two complexes two guanidinium groups and two peptide nitrogens participate as ligands around the copper ion.  相似文献   

2.
Analysis of circular dichroism spectra made it possible to offer a method for estimation of tetracycline solutions contamination with metal ions. By its sensitivity the method is much superior to the spectrophotometric one used at present for determination of the antibiotic purity. In the latter method formation of complexes with metals is traced by batochromic displacement of the absorption spectra. The new method is rapid, relatively selective and requires comparatively small quantities of the substance for the analysis, which provides its use under both laboratory and manufacture conditions. The method is based on identification of the circular dichroism spectra of tetracycline complexes with metals in the long wavelength region. The presence of the circular dichroism concervative bands with strictly defined extremums in the spectra of tetracycline low acid solutions contaminated by multiply charged metal ions allowed vs. the circular dichroism spectra of pure tetracycline sample to conclude that the solution contained admixtures and to suggest their nature. It was shown that the charge, ion radius and tetracycline:metal relation were the factors defining the mark and location of the dichroism band extremums. At lambda(extr)-410-415 nm the tetracycline complexes with light metal ions such as Mg2+, Al3+ and Ca2+ were detected by the circular dichroism negative band in the spectra, while the complexes with heavy metal ions such as Sc3+, Sr3+, Cu3+, Cd3+, Ba2+, Y3+ and the cerium subgroup lanthanides were detected by the circular dichroism positive band. The tetracycline complexes with the lanthanides of the second half of the yttrium subgroup (Ho(3+)-Lu3+) were characterized by the presence of the circular dichroism minimum at lambda(min)-425 nm. When the tetracycline concentration was above 1.5 x 10(-3) M, multiligand complexes with circular dichroism negative extremum at lambda(min)-400 nm formed.  相似文献   

3.
Vibrational circular dichroism (VCD) spectroscopy and simultaneous IR absorption measurements are applied to study the interaction of natural calf thymus DNA with Cu2+ ions at room temperature in a Cu2+ concentration range of 0-0.4M (a Cu2+/phosphate molar ratio [Cu]/[P] of 0-0.7). In some important instances, VCD provides more detailed insights than previous IR investigations whereas in several others it leads to the same interpretations. The Cu2+ ions bind to phosphate groups at a low metal concentration. Upon increasing the ion concentration, chelates are formed in which Cu2+ binds to the N7 of guanine (G) and a phosphate group. Detectable only by VCD, significant distortion of most guanine-cytosine (GC) base pairs occurs at a [Cu]/[P] ratio of 0.5 with only a minor affect on adenine-thymine (AT) base pairs, which favors a "sandwich" complex in which a Cu2+ ion is inserted between two adjacent guanines in a GpG sequence. The AT base pairs become significantly distorted when the metal concentration is increased to 0.7 [Cu]/[P]. A number of GC base pairs, which are possibly involved in sandwich complexes, remain stacked and paired even at 0.7 [Cu]/[P], preventing complete strand separation. The DNA secondary structure changes considerably from the standard B-form geometry at a [Cu]/[P] ratio of 0.4 and higher. A further transition to some intermediate conformation that is inconsistent with either the A- or Z-form or a completely denatured state is suggested in agreement with other works. In general, VCD proves to be a reliable indicator of the 3-dimensional structure of the DNA-metal ion complexes, which reveals structural details that cannot be deduced from the IR absorption spectra alone.  相似文献   

4.
The formation of Cu(II)-bleomycin complexes as a function of pH has been studied using circular dichroism, absorption, electron paramagnetic resonance spectroscopy, and potentiometric titration. Our data support the following points: the formation of Cu(II)-bleomycin complexes occurs in a three-step process: a first complex (I) is formed at pH 1.2, which most probably involves the pyrimidine nitrogen, the secondary amine nitrogen, and two water molecules as the four in-plane ligands of copper. A second complex (II) is formed at pH 2.5, through the further coordination of the peptide nitrogen of histidine residue, and histidine imidazole nitrogen giving rise to the release of two protons. The fixation, in apical position, of the alpha-amino nitrogen of beta-aminoalanine occurs in a last step through the release of one additional proton. A value of 2.7 has been obtained for the pK of formation of this third complex, which is the species present at physiological pH. In the Cu(II)-depbleomycin system only one complex (II') has been detected.  相似文献   

5.
The conformational and binding properties towards Cu(II) and Ni(II) ions of Gly-Gly-His derivatives of poly(l-lysine) have been investigated mainly using circular dichroism (c.d.) spectroscopy. These derivatized polymers can be considered macromolecular analogues of the Cu(II) and Ni(II) binding site of human serum albumin. It has been shown that modification up to 53% of the ε-amino groups of lysine side chains by covalent binding of the tripeptide unit Gly-Gly-His does not induce appreciable alteration of the α-helix forming tendency of the polylysine backbone. The derivatized polymers exhibit strong affinity towards Cu(II) and Ni(II) ions. At neutral pH, complexes are formed in which each tripeptide chelating unit is linked to one metal ion. The spectral characteristics in the visible absorption region are consistent with a square planar geometry of the complexes, with deprotonated peptide groups and one imidazole nitrogen in the coordination sphere of the ion. C.d. measurements in the far u.v. indicate that complex formation in the side chains causes an increase of ordered structure of the peptide backbone at neutral pH. This fact is interpreted in terms of a reduced electrostatic repulsion among side chains due to charge neutralization in the tripeptide units linked to metal ions.  相似文献   

6.
Stoichiometries of arsenazo III-Ca complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The equilibrium interactions of the metallochromic indicator arsenazo III with calcium at physiological ionic strength and pH were investigated spectrophotometrically and with the aid of a calcium electrode. Evidence suggests the formation of more than one dye-calcium complex. The analysis of data obtained over a 10,000-fold range of dye concentrations concludes that at the concentrations used for in vitro biochemical studies (10--100 microM), arsenazo III absorbance changes in response to calcium binding primarily involve the formation of a complex involving two dye molecules and two calcium ions. At millimolar dye concentrations, typical of physiological calcium transient determinations in situ, a second complex involving two arsenazo III molecules and one calcium ion is additionally formed. A third complex, involving one arsenazo III molecule and one calcium ion, is formed at very low dye concentrations. The results reported here suggest that equilibrium calibration of the dye with calcium cannot be used directly to satisfactorily relate transient absorbance changes in physiological preparations to calcium concentration changes since several stoichiometrically distinct complexes with different absorbances could be formed at different rates. The results of this study do not permit the elucidation of a unique kinetic scheme of arsenazo III complexation with calcium; for this, in vitro kinetic analysis is required. Results of similar analysis of the dye interaction with magnesium are also reported, and these appear compatible with a much simpler model of complexation.  相似文献   

7.
The interactions were studied of DNA with the nonhistone chromatin protein HMGB1 and histone H1 in the presence of manganese(II) ions at different protein to DNA and manganese to DNA phosphate ratios by using absorption and optical activity spectroscopy in the electronic [ultraviolet (UV) and electronic circular dichroism ECD)] and vibrational [infrared (IR) and vibrational circular dichroism (VCD)] regions. In the presence of Mn2+, the protein-DNA interactions differ from those without the ions and cause prominent DNA compaction and formation of large intermolecular complexes. At the same time, the presence of HMGB1 and H1 also changed the mode of interaction of Mn2+ with DNA, which now takes place mostly in the major groove of DNA involving N7(G), whereas interactions between Mn2+ and DNA phosphate groups are weakened by histone molecules. Considerable interactions were also detected of Mn2+ ions with aspartic and glutamic amino acid residues of the proteins.  相似文献   

8.
The nature and mechanism of the inhibition of the oxidoreductase activity of milk xanthine oxidase (XO) by Cu(2+), Hg(2+) and Ag(+) ions has been studied by steady state and stopped flow transient kinetic measurements. The results show that the nature of the inhibition is noncompetitive. The inhibition constants for Cu(2+) and Hg(2+) are in the micromolar and that for Ag(+) is in the nanomolar range. This suggests that the metal ions have strong affinity towards XO. pH dependence studies of the inhibition indicate that at least two ionisable groups of XO are involved in the binding of these metal ions. The effect of the interaction of the metal ions on the reductive and oxidative half reactions of XO has been investigated, and it is observed that the kinetic parameters of the reductive half reaction are not affected by these metal ions. However, the interaction of these metal ions with XO significantly affects the kinetic parameters of the oxidative half reaction. It is suggested that this may be the main cause for the inhibition of XO activity by the metal ions.  相似文献   

9.
The study of the Cu(II)-(L Asp)n system using circular dichroism and potentiometric data has provided evidence indicating the formation of two complexes in a two step process. In the first (I) of these complexes, obtained at pH 4.5, two carboxyl residues are bound to the metal. This complex partially inhibits the transition from α helix to nonperiodic conformation. In the second complex (II) two peptide nitrogens and two carboxylate oxygens are bound to each Cu(II) ion forming two hexatomic chelate rings. The CD spectral pattern is then the opposite of what is obtained when a five-membered chelate ring is formed.  相似文献   

10.
We have carried out a kinetic analysis of the conformational changes that myoglobin (Mb) undergoes in the presence of the anionic surfactant sodium dodecyl sulfate (SDS). The time-resolved results have been combined with steady-state circular dichroism (CD) and resonance Raman (RR) spectroscopy. Time-resolved absorption spectra indicate that SDS induces changes in the heme coordination with the formation of three different Mb species, depending on SDS concentration. The formation of the Mb/SDS complex involves three or four phases, depending on surfactant concentration. The kinetic data are analyzed assuming two modes of interaction according to whether SDS is monomeric or micellar. The two pathways are separated but interconnected through free Mb. At the lowest concentrations a six-coordinated, low-spin form dominates. Two distinct five-coordinated species are formed at higher SDS concentrations: one is a protein-free heme and the other reequilibrates slowly with the six-coordinated, low-spin form. The resulting complexes have been characterized by CD and RR. In addition, CD spectra show that the local changes in the heme environment are coupled to changes in the protein structure.  相似文献   

11.
Complex formation of valinomycin with Ba2+ ions was investigated by circular dichroism spectroscopy. The results indicated that Ba2+ forms entirely different types of complexes when compared with K+. The data with perchlorate salt showed evidence for the formation of less stable V2C (peptide sandwich), VC (1:1), and VC2 (ion sandwich) complexes followed by a stable final complex upon gradual addition of salt (V stands for valinomycin and C for the cation). This final complex possibly has a flat structure with no internal hydrogen bonds, similar to that of valinomycin in highly polar solvents. The possible complexation mechanism and the role played by anions and isopropyl side chains are highlighted.  相似文献   

12.
The formation of Cu2+ complexes with native and denatured DNA is studied by the methods of differential UV spectroscopy, CD spectroscopy, and viscometry. On ion binding to the bases of native DNA the latter transforms into a new conformation. This transition is accompanied with a sharp increase in UV absorption and a decrease in the intrinsic viscosity though the high degree of helicity persists. Possible sites of Cu2+ ion binding on DNA of various conformations are found along with corresponding constants of complex formation.  相似文献   

13.
A partially-purified sample of hydrogenase from Methanobacterium thermoautotrophicum (delta H strain) has been investigated by optical absorption, magnetic circular dichroism and electron paramagnetic resonance spectroscopy. Variable temperature magnetic circular dichroism studies reveal, for the first time, the optical transitions associated with the Ni(III) center in the oxidized enzyme. Low temperature magnetic circular dichroism spectroscopy provides a new method of assessing both the coordination environment of Ni in hydrogenase and the appropriateness of inorganic model complexes.  相似文献   

14.
The interaction of acridine orange with dermatan and chondrotin sulfates results in the formation of complexes containing bound dye molecules ordered into dissymmetric arrays. Complexes containing an excess of available disaccharide residues compared to dye are completely soluble, and exhibit biphasic circular dichroism bands. Analysis of the dependence of the extrinsic circular dichrosim on dye aggregation indicates the presence of extended dye stacks bound to the glycosaminoglycan. Complexes formed in solutions containing an excess of dye are only partially soluble, and exhibit circular dichroism spectra having band shifts and intensity changes relative to the soluble complexes. The latter complexes show a sharp drop in induced circular dichroism with temperature, due to a cooperative change in the structure of the complex. The structural order of the dye–glycosaminoglycan complex may differ from the intrinsic structure of the glycosaminoglycan itself in dilute solution.  相似文献   

15.
For studies of interactions between Co2+ and adenosine 5'-diphosphate or adenosine 5'-triphosphate (ADPH4+ and ATPH5+ in strongly acidic medium) visible circular dichroism (d-d transitions of Co2+) and ultraviolet circular dichroism (adenine transitions) have proven to be very sensitive to structural changes. Drastic variation of spectra as a function of pH and concentration enabled us to show the existence of various species, to state their stoichiometry and eventually, their self-association. With ATPH22-, C.D. results are in agreement with recent N.M.R. results. With ligands bearing three negative charges, complexes (1 metal:2 nucleotides)n are formed in which bases of the two nucleotides of the molecule are self-associated. With ADP3-, the visible C.D. spectrum of this complex is intense and hides the spectra of the complexes formed with other protonated species of ADP; this self-associated complex is detected up to a lower limit of 5 X 10(-4) M concentration. With ATPH3-, a complex exhibiting the same characteristics as the one with ADP3- is formed but in about twenty times less amount which explains why it was not detected by potentiometry. With 0.1 M ATP4-, dimeric (or polymeric) complexes, of 1:2 and 1:1 stoichiometry are observed. With 0.01 M ATP4-, 1:1 monomeric and 2:1 dimeric (or polymeric) complexes are detected. The interactions between Mn2+ ions and ADP or ATP have been studied by C.D. on the UV range. The same species as with Co2+ ions have been found but the 1:2 complex formation with ADP3- was shown to occur to a lesser extent and was not observed below a 10(-2) M ADP concentration.  相似文献   

16.
We report studies of the optical properties of the proflavine–DNA complex, using absorbance and circular dichroism spectroscopy. From comparison of the absorption spectra of proflavine complexed with calf thymus and T2 DNA, we conclude that stacking of the dyes external to the double helix is comparatively much weaker with T2 DXA, probably because of its glucosylation. Several sources are found for the circular dichroism induced in proflavine when it is complexed with DNA. There is a relatively weak circular dichroism induced when the dye is infinitely dilute on the DNA lattice; this presumably arises from the environmental asymmetry of the binding site. Stronger circular dichroism effects are induced by interaction of intercalated and stacked dyes; studies with T2 DNA, for which stacking seems to be blocked, permit a tentative resolution of effects due to the two modes of binding. One recurring theme of these studies is the observation that the optical properties are quite dependent on environment. The most dramatic example is a strong variation with salt concentration of the amplitude of the circular dichroism induced in the isolated (intercalated) monomer by the surrounding DNA. This suggests that the structure of the intercalated complex is quite sensitive to external conditions.  相似文献   

17.
Insertion of Cu2+ ions into horse liver alcohol dehydrogenase depleted of its catalytic Zn2+ ions creates an artificial blue copper center similar to that of plastocyanin and similar copper proteins. The esr spectrum of a frozen solution and the optical spectra at 296 and 77 K are reported, together with the corresponding data for binary and ternary complexes with NAD+ and pyrazole. The binary complex of the cupric enzyme with pyrazole establishes a novel type of copper proteins having the optical characteristics of Type 1 and the esr parameters of Type 2 Cu2+. Ternary complex formation with NAD+ converts the Cu2+ ion to a Type 1 center. By an intramolecular redox reaction the cuprous enzyme is formed from the cupric enzyme. Whereas the activity of the cupric alcohol dehydrogenase is difficult to assess (0.5%-1% that of the native enzyme), the cuprous enzyme is distinctly active (8% of the native enzyme). The implications of these findings are discussed in view of the coordination of the metal in native copper proteins.  相似文献   

18.
The DNA binding behavior of [Cu(4,7-dmp)(phen-dione)Cl]Cl (1) and [Cu(2,9-dmp)(phen-dione)Cl]Cl (2) where dmp and phen-dion stand for dimethyl-1,10-phenanthroline and 1,10-phenanthroline-5,6-dion, respectively, was studied with a series of techniques including Viscometry, UV–Vis absorption, circular dichroism and fluorescence spectroscopy. Cytotoxicity effect was also investigated. Thermodynamic parameters, enthalpy and entropy changes were calculated according to Van’t Hoff equation, which indicated that both reactions are predominantly enthalpically driven. However, these two complexes show different behavior in fluorescence, circular dichroism and viscometry methods which indicate the Cu(II) complexes interact with calf-thymus DNA by different mode of binding. These have further been verified by competition studies using Hoechst as a distinct groove binder. All these results indicate that these two complexes (1) and (2) interact with CT-DNA via groove binding and partially intercalative mode, respectively and the binding affinity of the complex 1 is higher than that of complex 2. Finally, our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Also, these new complexes showed excellent antitumor activity against human T lymphocyte carcinoma-Jurkat cell line.  相似文献   

19.
The interaction of mitoxantrone, ametantrone and their Pd(II) complexes with DNA have been studied using absorption and circular dichroism spectroscopy. We have shown that mitoxantrone forms with Pd(II) a complex in which two Pd(II) ions are bound to two molecules of drug (D1 and D2). One Pd(II) ion is bound to the two nitrogens of the side chain on C-5 of molecule D1 and to the two nitrogens of the side chain on C-5 of molecule D2, whereas the second Pd(II) ion is bound to the nitrogens of the side chain on C-8 of molecule D1 and of molecule D2. The same complex is formed between Pd(II) and ametantrone. The stability constants for these complexes are, respectively, beta M = (1.4 +/- 0.5).10(19) and beta A = (2.5 +/- 0.5).10(18). They display antitumor activity against P 388 leukemia which compares with that of the free drugs. Interactions of the free drugs with DNA have been studied. Mitoxantrone and ametantrone are not optically active by themselves. However, through interaction with DNA, there is an induction of optical activity within the electronic transitions of both drugs. At a nucleotide/drug molar ratio lower than about 5 a CD signal of the couplet type is observed, suggesting that there is a coupling between the pi----pi transitions of the molecules of drugs intercalated between the base pairs. This coupling disappears when the molar ratio is increased. The interactions of the Pd(II) complexes with DNA do not give rise to induction of optical activity within the electronic transition of the drugs, indicating that the presence of the metal ion prevents the intercalation of the drugs between the base pairs.  相似文献   

20.
Human, rabbit and bovine plasminogens, having different sensitivity to streptokinase-activating action, differ, according to spectrophotometric titration, tryptophan fluorescence and circular dichroism spectroscopy, in the state of tyrosine and tryptophan residues, and in secondary and tertiary structures. Human plasminogen-streptokinase equimolar complex formation (according to gel chromatography) is accompanied by a differential ultraviolet spectrum. Difference spectroscopy is a convenient and adequate means of studying the formation of the said complexes. Streptokinase-human plasminogen complex formation is not hindered by partial substitution of water (20%) with ethanol or dimethylsulphoxide or by addition of 0.001 M sodium dodecylsulphate. The complex is not formed in 6 M urea, in solution, at pH less than 2.0 or approximately 12.0-13.0, or with bovine plasminogen. Circular dichroism and tryptophan fluorescence spectral pattern changes during streptokinase-plasminogen complex formation enable us to conclude that streptokinase secondary and tertiary structures undergo certain rearrangements in the framework of the complex, while tryptophan-containing sites of the molecule are not drastically changed. The data obtained enable us to presuppose formation of streptokinase-rabbit plasminogen complexes which differ from human plasminogen complexes with streptokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号