首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcification of non-osseous tissues such as heart valves or vessels is a major concern in clinical practice. The exact mechanism is still unknown. Numerous studies have shown that mineral deposits of crystalline hydroxyapatite within these tissues were associated with increased non-collagenous protein content. More recently osteopontin was found to be associated with calcification in living tissues such as vessels and native human aortic valves. The aim of this study was to determine whether or not non-collagenous proteins can also be found in non-living tissues such as glutaraldehyde-pretreatedporcine valves after implantation in humans. Thirty-eight glutaraldéhyde pretreated porcine bioprostheses were studied: 16 not implanted and 22 after 11 years of implantation in the aortic and mitral valve position in humans. In areas of calcification vizualized by Von Kossa staining and microradiography, immunostaining using polyclonal antibodies against calcium-bindingproteins showed osteopontin positive staining and no staining for osteocalcin, bone sialoprotein or osteonectin. In uncalcified areas and in non-implanted valves, staining for osteopontin or other calcium-binding proteins was negative. Western blot analysis of macroscopically calcified and uncalcified areas showed that several proteins were adsorbed in implanted valves and confirmed the presence of osteopontin in the calcified areas, while no immunolabelling was found in non-calcified areas, in uncalcified valves and in non-implanted valves. Thus the presence of osteopontin in the calcified areas of bioprosthetic heart valves implanted in human indicates that this protein is associated with bioprosthetic valvular calcification. Since these valves are made of non-living connective tissue, and no cell immunostained for osteopontin was found around the calcified area, this study suggests that a non-cellular mediated mechanism involving protein adsorption may play a role in bioprosthetic valvular calcification.  相似文献   

2.
It is not known how gene expression of bone extracellular matrix molecules is controlled temporally and spatially, or how it is related with morphological differentiation of osteoblasts during embryonic osteogenesis in vivo. The present study was designed to examine gene expressions of type I collagen, osteonectin, bone sialoprotein, osteopontin, and osteocalcin during mandibular osteogenesis using in situ hybridization. Wistar rat embryos 13–20 days post coitum were used. The condensation of mesenchymal cells was formed in 14-day rat embryonic mandibles and expressed genes of pro-(I) collagen, osteonectin, bone sialoprotein and osteopontin. Cuboidal osteoblasts surrounding the uncalcified bone matrix were seen as early as in 15-day embryonic mandibles, while flat osteoblasts lining the surface of the calcified bone were seen from 16-day embryonic mandibles. Cuboidal osteoblasts expressed pro-1(I) collagen, osteonectin and bone sialoprotein intensely but osteopontin very weakly. In contrast, flat osteoblasts expressed osteopontin very strongly. Osteocytes expressed the extracellular matrix molecules actively, in particular, osteopontin. The present study demonstrated the distinct gene expression pattern of type I collagen, osteonectin, bone sialoprotein, osteopontin and osteocalcin during embryonic mandibular osteogenesis in vivo.  相似文献   

3.
Summary Atherosclerotic lesions are composed of cellular elements that have migrated from the vessel lumen and wall to form the cellular component of the developing plaque. The cellular elements are influenced by various growth-regulatory molecules, cytokines, chemoattractants, and vasoregulatory molecules that regulate the synthesis of the extracellular matrix composing the plaque. Because vascular smooth muscle cells (VSMC) constitute the major cellular elements of the atherosclerotic plaque and are thought to be responsible for the extracellular matrix that becomes calcified in mature plaques, immunostaining for collagenous and noncollagenous proteins typically associated with bone matrix was conducted on VSMC grownin vitro. VSMC obtained from human aorta were grown in chambers on glass slides and immunostained for procollagen type I, bone sialoprotein, osteonectin, osteocalcin, osteopontin, decorin, and biglycan. VSMC demonstrated an intense staining for procollagen type I, and a moderately intense staining for the noncollagenous proteins, bone sialoprotein and osteonectin, two proteins closely associated with bone mineralization. Minimal immunostaining was noted for osteocalcin, osteopontin, decorin, and biglycan. The presence in VSMC of collagenous and noncollagenous proteins associated with bone mineralization suggest that the smooth muscle cells in the developing atherosclerotic plaque play an important role in the deposition of the extracellular matrix involved in calcification of developing lesions.  相似文献   

4.
Osteoblast differentiation under in vitro conditions is associated with increased expression of non-collagenous bone proteins including osteocalcin, osteopontin, and osteonectin, the exact function of which remain poorly understood. To determine whether these proteins play an important role in the formation of mineralised bone matrix by osteoblasts in vivo, we analysed the time-course of their expression during estrogen-induced osteogenesis in female mice, and compared this with the formation of new cancellous bone. Female mice were sacrificed prior to or following treatment with 17beta-estradiol for up to 32 days (500 microg/animal/week). Total RNA was extracted from femurs, and changes in expression of genes for a range of osteoblast-derived proteins assessed by Northern blot analysis. In parallel experiments, the time course of cancellous bone formation was determined by measuring bone mineral density (BMD) of the distal femur. Estrogen led to a rapid increase in BMD, which reached significance by Day 16. This was preceded by three-fold increases in expression of alkaline phosphatase (ALP) and type I collagen (COL I) at Days 8 and 12 respectively. In contrast, osteocalcin, osteopontin, and osteonectin expression showed no change during this initial period, although modest increases were observed at later times (i.e., Days 20 and 24). Our results suggest that osteocalcin, osteopontin, and osteonectin are not involved in the initial phase of the osteogenic response to estrogen, suggesting that these non-collagenous bone proteins do not play a direct role in the formation of mineralised bone matrix by osteoblasts in vivo.  相似文献   

5.
Primary osteoblasts derived from avian long bone have been evaluated in terms of spatial and temporal expression of known osteoblastic marker proteins during the early phases of cell culture. Confocal imaging of matrix proteins revealed that osteocalcin, bone sialoprotein, osteopontin, and osteonectin were restricted to the cell interior at day 4 of culture; secretion and deposition into the extra-cellular matrix of bone sialoprotein and osteopontin was evident at 8 and 12 days of culture. Osteocalcin and osteonectin were not deposited in the matrix within the timeframe of the study. Total collagen levels produced and alkaline phosphatase activity were substantial by day 4 of culture, and increased from that point 4.0- and 5.5-fold, respectively, by culture day 12. The expression of type I collagen, PTHrP receptor, osteopontin, bone sialoprotein and osteocalcin was followed by Northern blot analysis. Type I collagen and osteopontin mRNA were expressed at constant levels throughout the culture period. Over the 12 days of culture both PTH/PTHrP receptor and bone sialoprotein mRNA expression were found to increase by 2.3- and 2.5-fold, respectively. In contrast, the expression of osteocalcin message decreased by 2.5-fold by day 8 of culture.  相似文献   

6.
 Cultures of isolated osteocytes may offer an appropriate system to study osteocyte function, since isolated osteocytes in culture behave very much like osteocytes in vivo. In this paper we studied the capacity of osteocytes to change their surrounding extracellular matrix by production of matrix proteins. With an immunocytochemical method we determined the presence of collagen type I, fibronectin, osteocalcin, osteopontin and osteonectin in cultures of isolated chicken osteocytes, osteoblasts and periosteal fibroblasts. In osteoblast and periosteal fibroblast cultures, large extracellular networks of collagen type I and fibronectin were formed, but in osteocyte populations, extracellular threads of collagen or fibronectin were only rarely found. The percentage of cells positive for osteocalcin, osteonectin and osteopontin in the Golgi apparatus, on the other hand, was highest in the osteocyte population. These results show that osteocytes have the ability to alter the composition of their surrounding extracellular matrix by producing matrix proteins. We suggest this property is of importance for the regulation of the calcification of the bone matrix immediately surrounding the cells. More importantly, as osteocytes depend for their role as mechanosensor cells on their interaction with matrix proteins, the adaptation of the surrounding matrix offers a way to regulate their response to mechanical loading. Accepted: 9 July 1996  相似文献   

7.
Four major non-collagenous bone proteins were localised by single and double immuno-histochemistry during de novo mineralisation and bone resorption. Both osteopontin and bone sialoprotein were localised ahead of the mineralisation front, suggesting that both proteins are necessary for the initiation of bone mineralisation. This supports previous suggestions that bone sialoprotein acts as a crystal nucleator. The role of osteopontin is less certain, but might be related to ensuring that only the right type of crystal is formed. Osteocalcin and osteonectin were not present in areas of first crystal formation, but were present in the fully mineralised matrix. Their role may be to control the size and speed of crystal formation. Osteopontin, bone sialoproteins and osteocalcin (but not osteonectin) were also present at reversal lines. Interpreting this localisation together with information from the literature, the following functions are suggested during resorption: Osteocalcin may act as a chemoattractant for osteoclasts, while both osteopontin and bone sialoprotein may facilitate the binding of osteoclasts via the arg-gly-asp motif.  相似文献   

8.
9.
Advances in the culture of mineralizing growth plate chondrocytes provided an opportunity to study endochondral calcification under controlled conditions. Here we report that these cultures synthesize large amounts of proteins characteristically associated with mineralization: type II and X collagens, sulfated proteoglycans, alkaline phosphatase, and the bone-related proteins, osteonectin and osteopontin. Certain chondrocytes appeared to accumulate large amounts of Ca2+ and Pi during the mineralization process: laser confocal imaging revealed high levels of intracellular Ca2+ in their periphery and X-ray microanalytical mapping revealed the presence of many Ca2+- and Pi-rich cell surface structures ranging from filamentous processes 0.14 ± 0.02 μm by 0.5–2.0 μm, to spherical globules 0.70 ± 0.27 μm in diameter. Removal of organic matter with alkaline sodium hypochlorite revealed numerous deposits of globular (0.77 ± 0.19 μm) mineral (calcospherites) in the lacunae around these cells. The size and spatial distribution of these mineral deposits closely corresponded to the Ca2+-rich cell surface blebs. The globular mineral progressively transformed into clusters of crystallites. Taken with earlier studies, these findings indicate that cellular uptake of Ca2+ and Pi leads to formation of complexes of amorphous calcium phosphate, membrane lipids, and proteins that are released as cell surface blebs analogous to matrix vesicles. These structures initiate development of crystalline mineral. Thus, the current findings support the concept that the peripheral intracellular accumulation of Ca2+ and Pi is directly involved in endochondral calcification.  相似文献   

10.
Seventeen day chicken embryonic osteoblasts treated over a 30-day period with 1,25(OH)2 D3 showed a 2–10-fold decrease in collagen, osteopontin and osteocalcin protein accumulation, alkaline phosphatase enzyme activity, and mineral deposition. Comparable inhibition in the steady state mRNA levels for α1(I) and α2(I) collagen, osteocalcin, and osteopontin were observed, and the inhibitory action of the hormone was shown to be specific for only the late release populations of cells from sequential enzyme digestions of the chick calvaria. In order to determine whether the continuous hormone treatment blocked osteoblast differentiation, the cells were acutely treated for 24 h with 1,25(OH)2 D3 at culture periods when the cells proliferate (day 5), a culture period when the cells cease further cell division and are increasing in the expression of their differentiated functions (day 17), and a culture period when the cells are encapsulated within a mineralized extracellular matrix (day 30). Inhibition of the expression of collagen, osteocalcin, and osteopontin were observed at days 17 and 30, while no effect could be detected for the 5-day cultures. To further define whether the inhibitory effect was specific for cells expressing their differentiated phenotype, 1,25(OH)2 D3 treatment was initiated at day 17 and continued to day 30 after the cells have established their collagenous matrix. In these experiments further collagenous matrix deposition, mineral deposition, alkaline phosphatase activity, and osteocalcin synthesis were also inhibited after the hormone treatment was initiated. These results, in summary, show that 1,25(OH)2 D3 in primary avian osteoblast cultures derived from 17-day embryonic calvaria inhibits the expression of several genes associated with differentiated osteoblast function and inhibit extracellular matrix mineral deposition.  相似文献   

11.
A role for matrix proteins has previously been proposed in the pathogenesis of arterial calcification in the setting of atherosclerosis, and a link has been suggested between osteoporosis and arterial calcification. Our aim has been to investigate whether matrix Gla protein (MGP) T-138C, osteopontin (SPP1) T-443C, and Asp94Asp single nucleotide polymorphisms are associated with the development of arterial calcification and bone density. The individual effects of the MGP and SPP1 polymorphisms with coronary calcification are weak and not statistically significant. Bone mineral density differences at both the hip and spine do not vary statistically by genotype for any of the polymorphisms studied. Given the significant role of both MGP and SPP1 in arteriosclerosis, further research in higher risk, older populations are needed to determine fully the way in which MGP and SPP1 polymorphisms are associated with disease.  相似文献   

12.
Calcification of matrix vesicles in human aortic valve and aortic media.   总被引:18,自引:0,他引:18  
Calcification of human aortic valve and aortic media occurs regularly, increases with age, and is distinctively associated with a zone of lipid accumulation. Ultrastructurally, the accumulated lipids are seen as cellular degradation products derived from senescent and degenerate fibrocytes and smooth muscle cells. The products when deposited in the matrix are morphologically similar to the matrix vesicles described in other calcifying tissues, and serve as the initial site of calcification rather than collagen or elastic fibers. Scattered among the smaller and more typical matrix vesicles, there are seen frequently giant vesicle-like structures measuring several microns in diameter. Many of these large calcified bodies contain needle-shaped, radially arranged apatite crystal deposits. Some of the large calcifying bodies are bounded by folded structures suggesting a membrane component, at times obscured by a more dense floccular osmiophilic deposition. Alcianophilic apparent proteoglycan particles are also adherent to these large calcified bodies. The substance forming the large calcified bodies might be a complex of phospholipids derived from cell membrane and proteoglycan derived from ground substance, this combination possible serving as a nidus for calcification.  相似文献   

13.
Matrix Gla protein (MGP) is a potent inhibitor of soft tissue calcification, and Mgp gene deletion in mice results in arterial calcification. Our aim was to examine osteopontin (OPN) expression and localization, and posttranslational processing of OPN by the crosslinking enzyme transglutaminase 2 (TG2), in the calcified aorta of Mgp-deficient (Mgp(-/-)) mice. Using immunohistochemistry and light and electron microscopy, we report that following mineralization occurring in the arterial media of Mgp(-/-) aortas, OPN is upregulated and accumulates at the surface of the calcified elastic lamellae. Macrophages were observed in direct contact with this OPN-rich layer. Western blot analysis of extracted Mgp(-/-) aortas revealed that the majority of the OPN was in high molecular mass protein complexes, indicating modification by a crosslinking enzyme. Consistent with this observation, TG2 expression and gamma-glutamyl-epsilon-lysyl crosslink levels were also increased in Mgp(-/-) aortas. In addition to the mineral-inhibiting actions of OPN, and based on data linking OPN and TG2 with cell adhesion in various cell types including monocytes and macrophages, we propose that TG2 interactions with OPN lead to protein polymerization that facilitates macrophage adhesion to the calcified elastic lamellae to promote clearance of the ectopic mineral deposits.  相似文献   

14.
X-ray diffraction, i.r. absorption, and chemical analyses have been carried out on the mineral deposits of calcified human mitral valves and glutaraldehyde-preserved porcine aortic grafts. The mineral deposits isolated from highly calcified mitral valves and porcine aortic grafts are constituted of type B-carbonate apatite. Magnesium substituted beta-tricalcium phosphate is present, together with an apatitic phase similar to dahllite, in the ashes of poorly calcified mitral valves. The contraction of the unit cell of beta-tricalcium phosphate due to magnesium incorporation is compared with the variation of the lattice constants of synthetic beta-tricalcium phosphate at different degree of magnesium substitution for calcium. The results reveal the important role of magnesium on the calcification of human valves. In fact, the apatitic phase deposited at the beginning of the calcification process, when there is a high magnesium content, converts completely into beta-tricalcium phosphate by heat treatment at 1,000 degrees C. On the other hand, when the calcification becomes massive, magnesium content appears highly reduced, and the deposited apatitic phase is characterized by a high thermal stability.  相似文献   

15.
Summary Skin calcification induced by topical calciphylaxis was provoked by a subcutaneous injection of iron chloride in rats previously sensitized by dihydrotachysterol. A cutaneous topical calcergy was induced by an injection of potassium permanganate. An electron-microscopical study of the long-term evolution of both these models of calcification was made. After the initial stages, mineralization of the connective tissue continued by a secondary nucleation process without matrix vesicles. The mineral composed of needle-like structures, apatite in nature, was mainly deposited between and around collagen fibrils, and showed various arrangements in calcified plaques. Intrafibrillar calcification was rarely observed and appeared only in the later stages. The extension of calcified deposits then stopped. Finally, there was a fragmentation of the mineralized area which was progressively surrounded by uncalcified collagen fibrils. A demineralization process, caused by cells such as macrophages and multinucleated giant cells, rather than a resorption of the calcified deposits, was noted. It is important to emphasize that, in both models of ectopic calcification, an evolution toward ectopic ossification was never observed, which is perhaps due to the absence of extensive resorption mechanisms.  相似文献   

16.
We have compared the expression of osteonectin with that of osteocalcin and bone sialoprotein during bone formation in the rat mandible, using in situ hybridization and immunohistochemistry. Expression of osteonectin, osteocalcin and bone sialoprotein mRNAs were first observed in newly differentiated osteoblasts of the developing mandible at embryonic day 15 (E15) and subsequently increased with the number of osteoblasts through E20. Definitive osteonectin immunostaining was observed in newly differentiated osteoblasts, but not in the intercellular unmineralized matrix. Immunostaining for osteocalcin and bone sialoprotein was visible in osteoblasts and unmineralized matrix. Concomitant with the initiation of matrix mineralization at E16, mineralized bone matrix showed osteocalcin and bone sialoprotein immunostaining, but lacked osteonectin immuno-staining. The same staining profile was observed during subsequent phases of bone formation at E17–20. However, sequential demineralization with ethanolic trimethylammonium EDTA and protease digestion of tissue sections demonstrated prominent osteonectin immunostaining of the mineralized bone matrix. Western blot analysis of osteonectin in extracts of fresh specimens at E18 and 20 revealed that an EDTA extract contains osteonectin having M r approximately 50kDa. These results indicate that newly differentiated osteoblasts synthesize and secrete osteonectin, which is mainly incorporated into the mineralized bone matrix and becomes a specific component of developing manibula of foetal rats.  相似文献   

17.
Vascular calcification is associated with increased cardiovascular risk and occurs by osteochondrogenic differentiation of vascular cells. Many of the same regulatory factors that control skeletal mineralization, including the complex metabolic pathway controlling levels of the activator, inorganic phosphate, and the potent inhibitor, pyrophosphate, also govern vascular calcification. We previously found that the cAMP/PKA signaling pathway mediates in vitro vascular cell calcification induced by inflammatory factors including tumor necrosis factor-alpha 1 and oxidized phospholipids. In this report, we tested whether this signaling pathway modulates phosphate and pyrophosphate metabolism. Treatment of primary murine aortic cells with the PKA activator, forskolin, significantly induced osteoblastic differentiation markers, including alkaline phosphatase (ALP), osteopontin, and osteocalcin as well as the pyrophosphate generator, ectonucleotide-pyrophosphatase/phosphodiesterase-1 (Enpp1) and the pyrophosphate transporter, ankylosis protein, but not the sodium/phosphate cotransporter, Pit-1. In the presence of a substrate for ALP, beta-glycerophosphate, which generates inorganic phosphate, forskolin also enhanced matrix mineralization. Inhibitors of ALP or Pit-1 abrogated forskolin-induced osteopontin expression and mineralization but not forskolin-induced osteocalcin or ALP. These results suggest that phosphate is necessary for PKA-induced calcification of vascular cells and that the extent of PKA-induced calcification is controlled by feedback induction of the inhibitor, pyrophosphate.  相似文献   

18.
19.
FGF21, a special member of FGF superfamily, has been proven to have pleiotropic metabolic effects and many potential therapeutic action in various metabolic disorders. Vascular calcification (VC), a perplexing clinical issue, is a major risk factor for many cardiovascular diseases, especially for patients with some metabolic diseases. However, the role of FGF21 on VC in vivo remains unclear. Thus, in this study, we observed the effect and mechanism of FGF21 on VC induced by vitamin D3 plus nicotine (VDN) treated rats. After four weeks' treatment, the calcium overload is mainly manifested in the increased blood pressure, aortic calcium content and ALP activity. Also, the HE and Alizarin-red S staining showed the structural damage of calcified vessel walls. In addition, the level of endogenous FGF21/β-Klotho/FGFR1 axis was up-regulated in the aortas of VC rats. Furthermore, exogenous FGF21 treatment significantly ameliorated the aortic injury and calcification in VC rats, and the level of β-Klotho and FGFR1 were furtherly increase. Moreover, FGF21 inhibited the osteogenic transition of VSMCs by down-regulating the expression of bone-associated proteins such as osteopontin (OPN), osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2), together with restored the expression of SM22α and SM α-actin, which are two of lineage markers in VSMCs. We provide the first evidence that FGF21 can inhibit the development of VC by inhibiting the osteogenic transition of VSMCs in rats. FGF21 might be an efficient endogenous vasoprotective factor for calcification.  相似文献   

20.
Ruthenium hexammine trichloride (RHT) and acridine orange were used to preserve and visualize anionic groups in human plaque and dental calculus. RHT-reacting material was present on the membrane of micro-organisms and in intermicrobial spaces of the calcifying areas, and seems to correspond to, and derive from, acidic glyco- and phospholipids of the plasma membrane of the micro-organisms. However, the presence of acidic salivary peptidoglycans cannot be ruled out. Two types of calcification were found: extramicrobial and intramicrobial. The former consisted of calcified deposits irregularly scattered in the intermicrobial matrix. They were in close relationship with RHT-reacting material, or were placed inside vesicular structures delimited by a membrane. Intramicrobial calcification consisted of small aggregates of needle-shaped crystals and/or of granular deposits; in both cases, they either masked the whole cytoplasm of the micro-organisms, or were located only over the plasma membrane. These results suggest that mineral deposition occurs in connection with acidic components of intermicrobial matrix, microbial plasma membranes, and cytoplasms. The addition of RHT and acridine orange to fixing and decalcifying solutions yields satisfactory preservation of dental calculus and plaque, and apparently reduces loss of their anionic organic components and increases their electron density. However, these substances are not sufficient to preserve all ultrastructural details in decalcified areas, probably because the inorganic substance prevents reaction of acridine orange and RHT with the organic components of the calcified matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号