首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the dosimetry performed to support an experiment that measured physiological responses of volunteer human subjects exposed to the resonant frequency for a seated human adult at 100 MHz. Exposures were performed in an anechoic chamber which was designed to provide uniform fields for frequencies of 100 MHz or greater. A half wave dipole with a 90 degrees reflector was used to optimize the field at the subject location. The dosimetry plan required measurement of transmitter harmonics, stationary probe drift, field strengths as a function of distance, electric and magnetic field maps at 200, 225, and 250 cm from the dipole antenna, and specific absorption rate (SAR) measurements using a human phantom, as well as theoretical predictions of SAR with the finite difference time domain (FDTD) method. On each exposure test day, a measurement was taken at 225 cm on the beam centerline with a NBS E field probe to assure consistently precise exposures. A NBS 10 cm loop antenna was positioned 150 cm to the right, 100 cm above, and 60 cm behind the subject and was read at 5 min intervals during all RF exposures. These dosimetry measurements assured accurate and consistent exposures. FDTD calculations were used to determine SAR distribution in a seated human subject. This study reports the necessary dosimetry for work on physiological consequences of human volunteer exposures to 100 MHz.  相似文献   

2.
The study presented in this article was designed to complete a dosimetry protocol required to establish the RF exposure levels at 100 MHz for measurement of the effect on cognition in human volunteers near the resonant frequency in seated positions. The results are compared with those reported previously using the same experimental procedures, except with the vertically radiating dipole antenna and corner reflector raised by .30 m to the vertical center of the anechoic chamber. The average whole body SAR for the high and low SAR conditions used in the previous study was achieved with a 12% increase in transmitter forward power. However, the incident power density averaged over the body was increased by 42%, from 40 and 80 W/m(2) in the previous study to 57 and 113 W/m(2) in the current study to achieve the same whole body average SAR used in the previous study. The differences in field patterns and field intensities between the previous and current studies were introduced by interactions between the E-field and RF absorbers in the floor and ceiling, which represent resonant structures at 100 MHz.  相似文献   

3.
Since 1994, our research has demonstrated how thermophysiological responses are mobilized in human volunteers exposed to three radio frequencies, 100, 450, and 2450 MHz. A significant gap in this frequency range is now filled by the present study, conducted at 220 MHz. Thermoregulatory responses of heat loss and heat production were measured in six adult volunteers (five males, one female, aged 24-63 years) during 45 min whole body dorsal exposures to 220 MHz radio frequency (RF) energy. Three power densities (PD = 9, 12, and 15 mW/cm(2) [1 mW/cm(2) = 10 W/m(2)], whole body average normalized specific absorption rate [SAR] = 0.045 [W/kg]/[mW/cm(2)] = 0.0045 [W/kg]/[W/m(2)]) were tested at each of three ambient temperatures (T(a) = 24, 28, and 31 degrees C) plus T(a) controls (no RF). Measured responses included esophageal (T(esoph)) and seven skin temperatures (T(sk)), metabolic rate (M), local sweat rate, and local skin blood flow (SkBF). Derived measures included heart rate (HR), respiration rate, and total evaporative water loss (EWL). Finite difference-time domain (FDTD) modeling of a seated 70 kg human exposed to 220 MHz predicted six localized "hot spots" at which local temperatures were also measured. No changes in M occurred under any test condition, while T(esoph) showed small changes (< or =0.35 degrees C) but never exceeded 37.3 degrees C. As with similar exposures at 100 MHz, local T(sk) changed little and modest increases in SkBF were recorded. At 220 MHz, vigorous sweating occurred at PD = 12 and 15 mW/cm(2), with sweating levels higher than those observed for equivalent PD at 100 MHz. Predicted "hot spots" were confirmed by local temperature measurements. The FDTD model showed the local SAR in deep neural tissues that harbor temperature-sensitive neurons (e.g., brainstem, spinal cord) to be greater at 220 than at 100 MHz. Human exposure at both 220 and 100 MHz results in far less skin heating than occurs during exposure at 450 MHz. However, the exposed subjects thermoregulate efficiently because of increased heat loss responses, particularly sweating. It is clear that these responses are controlled by neural signals from thermosensors deep in the brainstem and spinal cord, rather than those in the skin.  相似文献   

4.
A beam formed radiofrequency (RF) exposure-incubator employing a horn antenna, a dielectric lens, and a culture case in an anechoic chamber is developed for large scale in vitro studies. The combination of an open type RF exposure source and a culture case through which RF is transmitted realizes a uniform electric field (+/-1.5 dB) in a 300 x 300 mm area that accommodates 49 35 mm diameter culture dishes. This large culture dish area enables simultaneous RF exposure of a large number of cells or various cell lines. The RF exposure source operates at 2142.5 MHz corresponding to the middle frequency of the downlink band of the International Mobile Telecommunication 2000 (IMT-2000) cellular system. The dielectric lens, which has a gain of 7 dB, focuses RF energy in the direction of the culture case and provides a uniform electric field. The culture case is sealed and connected to the main unit for environmental control, located outside the anechoic chamber, via ducts. The temperature at the center of the tray, which contains the culture dishes in the culture room, is maintained at 37.0 +/- 0.2 degrees C by air circulation. In addition, the appropriate CO2 density and humidity supplied to the culture case realizes stable long-term culture conditions. Specific absorption rate (SAR) dosimetry is performed using an electric field measurement technique and the Finite Difference Time Domain (FDTD) calculation method. The results indicate that the mean SAR of the culture fluid at the bottom of the 49 (7 x 7 array) culture dishes used in the in vitro experiments is 0.175 W/kg for an antenna input power of 1 W and the standard deviation of the SAR distribution is 59%. When only 25 culture dishes (5 x 5 array) are evaluated, the mean SAR is 0.139 W/kg for the same antenna input power and the standard deviation of the SAR distribution is 47%. The proliferation of the H4 cell line in 72 h in a pair of RF exposure-incubators reveals that the culture conditions are equivalent to those of a common CO2 incubator.  相似文献   

5.
由于电子设备的广泛使用,人类已经越来越多地暴露在射频磁场的辐射下,但射频磁场的辐射效应却一直不明确.采用全细胞膜片钳技术,记录2 450 MHz射频磁场辐射对小鼠脑皮层神经元延迟整流钾电流IK的影响.利用Ansoft HFSS软件对6 dB全向天线建模仿真,验证距天线2~3 cm处磁场分布均匀,使用Agilent E5070B网络分析仪经该天线发射出2 450 MHz输出功率为39.81 mW电磁场,对细胞进行刺激.实验发现,2 450 MHz低功率射频磁场暴露5、10和15 min对IK均有明显的抑制作用;显著影响IK激活特性,对照组与磁场暴露组半数激活电压分别为(-1.13±2.32)mV和(19.52±1.03)mV(n=10, P <0.05);斜率因子分别为(23.21±3.29)mV和(13.95±1.27)mV(n=10, P <0.05).结果表明,低功率射频磁场通过减小延迟整流钾通道电流,影响神经元的生理功能,为进一步研究电磁辐射所引发的生物学效应提供了一种新的方法.  相似文献   

6.
The interaction of a dipole antenna with a human eye model in the presence of a metamaterial is investigated in this paper. The finite difference time domain (FDTD) method with convolutional perfectly matched layer (CPML) formulation have been used. A three-dimensional anatomical model of the human eye with resolution of 1.25 mm × 1.25 mm × 1.25 mm was used in this study. The dipole antenna was driven by modulated Gaussian pulse and the numerical study is performed with dipole operating at 900 MHz. The analysis has been done by varying the size and value of electric permittivity of the metamaterial. By normalizing the peak SAR (1 g and 10 g) to 1 W for all examined cases, we observed how the SAR values are not affected by the different permittivity values with the size of the metamaterial kept fixed.  相似文献   

7.
Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found.  相似文献   

8.
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure.  相似文献   

9.
The proximity of a mobile phone to the human eye raises the question as to whether radiofrequency (RF) electromagnetic fields (EMF) affect the visual system. A basic characteristic of the human eye is its light sensitivity, making the visual discrimination threshold (VDThr) a suitable parameter for the investigation of potential effects of RF exposure on the eye. The VDThr was measured for 33 subjects under standardized conditions. Each subject took part in two experiments (RF-exposure and sham-exposure experiment) on different days. In each experiment, the VDThr was measured continuously in time intervals of about 10 s for two periods of 30 min, having a break of 5 min in between. The sequence of the two experiments was randomized, and the study was single blinded. During the RF exposure, a GSM signal of 902.4 MHz (pulsed with 217 Hz) was applied to the subjects. The power flux density of the electromagnetic field at the subject location (in the absence of the subject) was 1 W/m(2), and numerical dosimetry calculations determined corresponding maximum local averaged specific absorption rate (SAR) values in the retina of SAR(1 g) = 0.007 W/kg and SAR(10 g) = 0.003 W/kg. No statistically significant differences in the VDThr were found in comparing the data obtained for RF exposure with those for sham exposure.  相似文献   

10.
The aim of this study was a dosimetrical analysis of the setup used in the exposure of the heads of domestic pigs to GSM-modulated radio frequency electromagnetic fields (RF-EMF) at 900 MHz. The heads of pigs were irradiated with a half wave dipole using three different exposure routines; short bursts of 1-3 s at two different exposure levels and a continuous 10-min exposure. The electroencephalogram (EEG) was registered continuously during the exposures to search for RF-EMF originated changes. The dosimetry was based on simulations with the anatomical heterogeneous numerical model of the pig head. The simulation results were validated by experimental measurements with the exposure dipole and a homogeneous liquid phantom resembling the pig head. The specific absorption rate (SAR), defined as a maximum average over 10 g tissue mass (SAR(10g)), was 7.3 W/kg for the first set of short bursts and 31 W/kg for the second set of short bursts. The SAR(10g) in the continuous 10-min exposure was 31 W/kg. The estimated uncertainty for the dosimetry was +/-25% (K = 2).  相似文献   

11.
The so-called carousel setup has been widely utilized for testing the hypotheses of adverse health effects on the central nervous system (CNS) due to mobile phone exposures in the frequency bands 800-900 MHz. The objectives of this article were to analyze the suitability of the setup for the upper mobile frequency range, i.e., 1.4-2 GHz, and to conduct a detailed experimental and numerical dosimetry for the setup at the IRIDIUM frequency band of 1.62 GHz. The setup consists of a plastic base on which ten rats, restrained in radially positioned tubes, are exposed to the electromagnetic field emanating from a sleeved dipole antenna at the center. Latest generation miniaturized dosimetric E field and temperature probes were used to measure the specific absorption rate (SAR) inside the brain of three rat cadavers of the Lewis strain and two rat cadavers of the Fisher 344 strain. A numerical analysis was conducted on the basis of three numerical rat phantoms with voxel sizes between 1.5 and 0.125 mm3 that are based on high resolution MRI scans of a 300 g male Wistar rat and a 370 g male Sprague-Dawley rat. The average of the assessed SAR values in the brain was 2.8 mW/g per W antenna input power for adult rats with masses between 220 and 350 g and 5.3 mW/g per W antenna input power for a juvenile rat with a mass of 95 g. The strong increase of the SAR in the brain with decreasing animal size was verified by simulations of the absorption in numerical phantoms scaled to sizes between 100 and 500 g with three different scaling methods. The study also demonstrated that current rat phantom models do not provide sufficient spatial resolution to perform absolute SAR assessment for the brain tissue. The variation of the SAR(brain)(av) due to changes in position was assessed to be in the range from +15% to -30%. A study on the dependence of the performance of the carousel setup on the frequency revealed that efficiency, defined as SAR(brain)(av) per W antenna input power, and the ratio between SAR(brain)(av) and SAR(body)(av) are optimal in the mobile communications frequency range, i.e., 0.8-3 GHz.  相似文献   

12.
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna.  相似文献   

13.
Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.  相似文献   

14.
The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant health risk.  相似文献   

15.
Bahr A  Dorn H  Bolz T 《Bioelectromagnetics》2006,27(4):320-327
An exposure system for investigation of volunteers during simulated GSM and WCDMA mobile phone usage has been designed. The apparatus consists of a dual band antenna with enhanced carrying properties that enables exposure for at least 8 h a day. For GSM a 900 MHz pulse modulated carrier was used. The QPSK modulated WCDMA signal at 1966 MHz comprises a power control scheme, which was designed for investigations of biological effects. The dosimetry of the exposure system by measurements and calculations is described in detail within this paper. It is shown that the SAR distribution of the antenna shows similar characteristics to mobile phones with an integrated antenna. The 10 g averaged localized SAR, normalized to an antenna input power of 1 W and measured in the flat phantom area of the SAM phantom, amounts to 7.82 mW/g (900 MHz) and 10.98 mW/g (1966 MHz). The simulated SAR(10 g) in the Visible Human head model agrees with measured values to within 20%. A variation of the antenna rotation angle results in an SAR(10 g) change below 17%. The increase of the antenna distance by 2 mm with respect to the human head leads to an SAR(10 g) change of 9%.  相似文献   

16.
Conflicting results have recently emerged from human provocation studies that addressed the possible health hazards of radio frequency (RF) field exposure from mobile phones. Different findings may have resulted from exposures that are poorly defined and difficult to compare. The aim of this study was to develop guidelines to facilitate the development of exposure systems for human volunteer studies which lead to reproducible results and which provide maximum relevance with respect to the assessment of the safety of mobile technology. The most important exposure parameters are discussed such as the signal, field distribution, and field strength, as well as the minimum requirements for the setup and dosimetry.  相似文献   

17.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

18.
Detailed and accurate dosimetric information is a basic precondition for acquiring adequate interpretations and valuations of in vivo studies testing radiofrequency (RF) electromagnetic fields (EMF). Instantaneous locally induced fields depend on many parameters, for example, orientation of the animal with respect to the incident field, animal size and posture, and tissue distribution. These parameters are often constrained, resulting in significant uncertainties in the dosimetric assessment of the exposure, averaged over all animals and the entire experimental phase, as well as in significant variations of the local exposures during the experiment. A sufficient analysis should therefore include (1) average and peak spatial specific absorption rate (SAR) values for the whole body and specific organs, (2) the uncertainty of each assessed SAR value, and (3) the short term and long term SAR variations between the tissues of individual animals. A methodology to obtain this pertinent information is developed and proposed in this paper. Using this methodology the dosimetry of a rat exposure apparatus operating at the carrier frequency of 1747 MHz, previously developed for a 2-year bioassay study within the European Union project PERFORM, was obtained. We have demonstrated that comprehensive dosimetric data can be obtained with reasonable effort using the proposed method, providing that the exposure setup is soundly formulated.  相似文献   

19.
Thermoregulatory responses of heat production and heat loss were measured in two different groups of seven adult volunteers (males and females) during 45‐min dorsal exposures of the whole body to 450 or 2450 MHz continuous‐wave radio frequency (RF) fields. At each frequency, two power densities (PD) were tested at each of three ambient temperatures (Ta = 24, 28, and 31 °C) plus Ta controls (no RF). The normalized peak surface specific absorption rate (SAR), measured at the location of the subject's center back, was the same for comparable PD at both frequencies, i.e., peak surface SAR = 6.0 and 7.7 W/kg. No change in metabolic heat production occurred under any exposure conditions at either frequency. The magnitude of increase in those skin temperatures under direct irradiation was directly related to frequency, but local sweating rates on back and chest were related more to Ta and SAR. Both efficient sweating and increased local skin blood flow contributed to the regulation of the deep body (esophageal) temperature to within 0.1 °C of the baseline level. At both frequencies, normalized peak SARs in excess of ANSI/IEEE C95.1 guidelines were easily counteracted by normal thermophysiological mechanisms. The observed frequency‐related response differences agree with classical data concerning the control of heat loss mechanisms in human beings. However, more practical dosimetry than is currently available will be necessary to evaluate realistic human exposures to RF energy in the natural environment. Bioelectromagnetics 20:12–20, 1999. Published 1999 Wiley‐Liss, Inc.  相似文献   

20.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号