首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular matrix in vivo contains variable but often large amounts of glycosaminoglycans that influence cell and tissue function. Hyaluronan (HA) is an abundant glycosaminoglycan within the extracellular matrix of the myocardium during early development and in the aftermath of a myocardial infarction. Its flexible anionic structure has a strong influence on mechanical response and interstitial fluid flow within the matrix. Additionally, HA has a direct, biochemical effect on cells through an array of cell-surface receptors, including CD44, RHAMM/CD168, and other surface-exposed structures. Recent studies have shown that HA modulates the response of cardiomyocytes and other cell types to two-dimensional substrates of varying elastic moduli. This study investigates the force response to HA of cardiomyocytes and cardiac fibroblasts within three-dimensional matrices of variable composition and mechanical properties in vitro. HA significantly decreased the force exerted by the cell-matrix constructs in a tensiometer testing platform and within microfabricated tissue gauges. However, its effect was no different from that of alginate, an anionic polysaccharide with the same charge density but no specific transmembrane receptors. Therefore, these results establish that HA exerts a generic physical-chemical effect within three-dimensional hydrogels that must be accounted for when interrogating cell-matrix interactions.  相似文献   

2.
The use of 3D extracellular matrix (ECM) microenvironments to deliver growth-inductive signals for tissue repair and regeneration requires an understanding of the mechanisms of cell–ECM signaling. Recently, hyaluronic acid (HA) has been incorporated in collagen matrices in an attempt to recreate tissue specific microenvironments. However, it is not clear how HA alters biophysical properties (e.g. fibril microstructure and mechanical behavior) of collagen matrices or what impact these properties have on cell behavior. The present study determined the effects of varying high molecular weight HA concentration on 1) the assembly kinetics, fibril microstructure, and viscoelastic properties of 3D type I collagen matrices and 2) the response of human dermal fibroblasts, in terms of morphology, F-actin organization, contraction, and proliferation within the matrices. Results showed increasing HA concentration up to 1 mg/ml (HA:collagen ratio of 1:2) did not significantly alter fibril microstructure, but did significantly alter viscoelastic properties, specifically decreasing shear storage modulus and increasing compressive resistance. Interestingly, varied HA concentration did not significantly affect any of the measured fibroblast behaviors. These results show that HA-induced effects on collagen matrix viscoelastic properties result primarily from modulation of the interstitial fluid with no significant change to the fibril microstructure. Furthermore, the resulting biophysical changes to the matrix are not sufficient to modulate the cell–ECM mechanical force balance or proliferation of resident fibroblasts. These results provide new insight into the mechanisms by which cells sense and respond to microenvironmental cues and the use of HA in collagen-based biomaterials for tissue engineering.  相似文献   

3.
Luo ZP  Sun YL  Fujii T  An KN 《Biorheology》2004,41(3-4):247-254
Type II collagen and hyaluronan are the two major components of extracellular molecules in cartilage and play an important role in mechanical functions of extracellular matrix. Currently, their mechanical properties have been investigated only at the gross-level. In this study, the mechanical properties of single type II collagen and hyaluronan molecules were directly measured using optical tweezers technique. The persistence length was found to be 11.2+/-8.4 nm in type II collagen and 4.5+/-1.2 nm in hyaluronan. This result suggested that type II collagen is stiffer than hyaluronan at the individual molecule level, which supports the general concept that collagen is responsible for resisting tensile force. The experimental system developed here also provides a powerful tool for quantifying mechanical properties of extracellular matrix at the single molecule level.  相似文献   

4.
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin?biotin bond. Implications for the molecular mechanism of unbinding of HA?hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA?hyaladherin complexes and HA-rich extracellular matrices.  相似文献   

5.
Stretching force can induce conformational changes of proteins and is believed to be an important biological signal in the mechanotransduction network. Tenascin-C is a large extracellular matrix protein and is subject to stretching force under its physiological condition. Regulating the mechanical properties of the fibronectin type III domains of tenascin-C will alter its response to mechanical stretching force and thus may provide the possibility of regulating the biological activities of tenascin-C in living cells. However, tuning the mechanical stability of proteins in a rational and systematic fashion remains challenging. Using the third fibronectin type III domain (TNfn3) of tenascin-C as a model system, here we report a successful engineering of a mechanically stronger extracellular matrix protein via engineered metal chelation. Combining steered molecular dynamics simulations, protein engineering and single-molecule atomic force microscopy, we have rationally engineered a bihistidine-based metal chelation site into TNfn3. We used its metal chelation capability to selectively increase the unfolding energy barrier for the rate-limiting step during the mechanical unfolding of TNfn3. The resultant TNfn3 mutant exhibits enhanced mechanical stability. Using a stronger metal chelator, one can convert TNfn3 back to a state of lower mechanical stability. This is the first step toward engineering extracellular matrix proteins with defined mechanical properties, which can be modulated reversibly by external stimuli, and will provide the possibility of using external stimuli to regulate the biological functions of extracellular matrix proteins.  相似文献   

6.
EGFR, a critical regulator of oncogenic signaling during cancer progression, is capable of integrating multireceptor signaling pathways that promote metastasis. EGFR is subject to regulatory cues from the extracellular matrix (ECM), of which hyaluronan (HA) is a major component. In mammary tumors, HA is deposited in the ECM where it functions in biomechanical support and modulates intracellular signaling. We utilized a 3D collagen system in which HA is either polymerized in collagen matrix or provided soluble in the media (sHA). Here we report that collagen-embedded HA (eHA) inhibits EGFR activation, filopodia formation, and cell spreading on a collagen matrix. These findings demonstrate a novel role for eHA as a protective molecule when encountered in the collagen matrix during cancer progression.  相似文献   

7.
Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.  相似文献   

8.
A model is presented outlining the molecular and cellular events that occur during the early stages of the wound healing process. The underlying theme is that there is a specific binding interaction between fibrin, the major clot protein, and hyaluronic acid (HA), a constituent of the wound extracellular matrix. This binding interaction, which could also be stabilized by other cross-linking components, provides the driving force to organize a three-dimensional HA matrix attached to and interdigitated with the initial fibrin matrix. The HA-fibrin matrix plays a major role in the subsequent tissue reconstruction processes. We suggest that HA and fibrin have both structural and regulatory functions at different times during the wound healing process. The concentration of HA in blood and in the initial clot is very low. This is consistent with the proposed interaction between HA and fibrin(ogen), which could interfere with either fibrinogen activation or fibrin assembly and cross-linking. We propose that an activator (e.g. derived from a plasma precursor, platelets or surrounding cells) is produced during the clotting reaction and then stimulates one or more blood cell types to synthesize and secrete HA into the fibrin matrix of the clot. We predict that HA controls the stability of the matrix by regulating the degradation of fibrin. The new HA-fibrin matrix increases or stabilizes the volume and porosity of the clot and then serves as a physical support, a scaffold through which cells trapped in the clot or cells infiltrating from the peripheral edge of the wound can migrate. The HA-fibrin matrix also actively stimulates or induces cell motility and activates and regulates many functions of blood cells, which are involved in the inflammatory response, including phagocytosis and chemotaxis. The secondary HA-fibrin matrix itself is then modified as cells continue to migrate into the wound, secreting hyaluronidase and plasminogen activator to degrade the HA and fibrin. At the same time these cells secrete collagen and glycosaminoglycans to make a more differentiated matrix. The degradation products derived from both fibrin and HA are, in turn, important regulatory molecules which control cellular functions involved in the inflammatory response and new blood vessel formation in the healing wound. The proposed model generates a number of testable experimental predictions.  相似文献   

9.
Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-X is an elastic protein and the fibronectin type III (FnIII) domains can unfold under a stretching force and refold to regain their mechanical stability upon the removal of the stretching force. All the 30 FnIII domains of tenascin-X show similar mechanical stability, mechanical unfolding kinetics, and contour length increment upon domain unfolding, despite their large sequence diversity. In contrast to the homogeneity in their mechanical unfolding behaviors, FnIII domains fold at different rates. Using the 10th FnIII domain of tenascin-X (TNXfn10) as a model system, we constructed a polyprotein chimera composed of alternating TNXfn10 and GB1 domains and used atomic force microscopy to confirm that the mechanical properties of TNXfn10 are consistent with those of the FnIII domains of tenascin-X. These results lay the foundation to further study the mechanical properties of individual FnIII domains and establish the relationship between point mutations and mechanical phenotypic effect on tenascin-X. Moreover, our results provided the opportunity to compare the mechanical properties and design of different forms of tenascins. The comparison between tenascin-X and tenascin-C revealed interesting common as well as distinguishing features for mechanical unfolding and folding of tenascin-C and tenascin-X and will open up new avenues to investigate the mechanical functions and architectural design of different forms of tenascins.  相似文献   

10.
Hyaluronan (HA) is a ubiquitous, major component of the extracellular matrix. It is involved in cell adhesion and locomotion, and hence in tumor metastasis. We have previously reported that 4-methylumbelliferone (MU) inhibits HA synthesis and may be a useful tool for examining the functions of HA. We here demonstrate that the formation of cell surface HA by melanoma cells and its release into the culture medium are inhibited by MU. Adhesion and locomotion assays revealed that the adhesion and locomotion of melanoma cells were dose-dependently inhibited by MU. Conversely, treatment with exogenous HA enhanced both adhesion and locomotion. Thus, preventing the formation of cell surface HA reduced both the adhesion and locomotion of melanoma cells, suggesting that MU may act as an inhibitor of tumor metastasis.  相似文献   

11.
Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix.  相似文献   

12.
Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking.  相似文献   

13.
The development of the synovial joint cavity between the cartilage anlagen of the long bones is thought to be mediated by differential matrix synthesis at the developing articular surfaces. In addition, many studies have shown that removal of movement-induced mechanical stimuli from developing diarthrodial joints prevents cavity formation or produces a secondary fusion of previously cavitated joints. Herein, we describe an inductive influence of mechanical strain on hyaluronan metabolism and the expression of hyaluronan-binding proteins in cultured cells isolated from the articular surface of the distal tibial condyles of 18-day chick embryos. The effect of 10 min of mechanical strain on hyaluronan release into culture media, intracellular uridine diphospho-glucose dehydrogenase activity (an enzyme required for hyaluronan saccharide precursor production), cell surface hyaluronan-binding protein expression and HA synthase mRNA expression were analysed up to 24 h later. Six hours after the application of strain, there was a significant increase in the accumulation of hyaluronan released into tissue culture media by strained fibrocartilage cells compared with controls, an effect still detectable after 24 h. Strained cells also showed increased activity for uridine diphospho-glucose dehydrogenase and expressed higher levels of the hyaluronan-binding protein CD44 at 24 h. In addition, at 24 h mRNA for HA synthase 2 was expressed in all samples whereas mRNA for HA synthase 3 was only expressed in strained cells. These results further highlight the role for movement-induced stimuli in differential extracellular matrix metabolism during joint development and also show that strain may facilitate differential HA synthase gene expression.  相似文献   

14.
Chondrocytes use mechanical signals, via interactions with their environment, to synthesize an extracellular matrix capable to withstanding high loads. Most chondrocyte-matrix interactions are mediated via transmembrane receptors such as integrins or non-integrins receptors (i.e. annexin V and CD44). The aim of this study was to analyze, by flow cytometry, the adhesion molecules (alpha5/beta1 integrins and CD44) on rat chondrocytes seeded into 3D biosystem made of alginate and hyaluronate. These biosystems were submitted to mechanical stress by knocking the biosystems between them for 48 hours. The expression of type I and type II collagen was also evaluated. The results of the current study showed that mechanical stress induced an increase of type II collagen production and weak variations of alpha5/beta1 receptors expression no matter what biosystems. Moreover, our results indicated that hyaluronan receptor CD44 expression depends on extracellular matrix modifications. Thus, these receptors were activated by signals resulted from cell environment variations (HA addition and modifications owing to mechanical stress). It suggested that this kind of receptor play a crucial role in extracellular matrix homeostasis. Finally, on day 24, no dedifferentiation of chondrocytes was noted either in biosystems or under mechanical stress. For all biosystems, the neosynthesized matrix contained an important level of collagen, which was type II, whatever biosystems. In conclusion, it appeared that the cells, under mechanical stress, maintained their phenotype. In addition, it seems that, on rat chondrocytes, alpha5/beta1 integrins did not act as the main mechanoreceptor (as described for human chondrocytes). In return, hyaluronan receptor CD44 seems to be in relation with matrix composition.  相似文献   

15.
BackgroundMid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process.Conclusions/SignificanceOur data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts'' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.  相似文献   

16.
Dentin matrix protein-1 (DMP1) is a mineralized tissue matrix protein synthesized by osteoblasts, hypertrophic chondrocytes, and ameloblasts as well as odontoblasts. DMP1 is believed to have multiple in vivo functions, acting both as a signaling molecule and a regulator of biomineralization. Using a cell-free system in vitro, we evaluated the action of DMP1 in the regulation of hydroxylapatite (HA) formation and crystal growth. The non-phosphorylated recombinant protein acted as an HA nucleator, increasing the amount of mineral formed in a gelatin gel HA growth system relative to protein-free controls. The recombinant protein phosphorylated in vitro had no detectable effect on HA formation and growth. In contrast, phosphorylated bovine DMP1 expressed in marrow stromal cells with an adenovirus vector containing 29.7 phosphates/mol was an effective inhibitor of HA formation and growth. The native full-length protein appeared to be absent or present in only small amounts in the extracellular matrix of bones and teeth. However, two highly phosphorylated fragments representing the N- and C-terminal portions of DMP1 have been identified, apparently arising from proteolytic cleavage of four X-Asp bonds. The highly phosphorylated C-terminal 57-kDa fragment (containing 42 phosphates/mol), like the non-phosphorylated DMP1, was an HA nucleator. These data suggest that, in its native form, DMP1 inhibits mineralization, but when cleaved or dephosphorylated, it initiates mineralization. These in vitro data are consistent with the findings in the DMP1 knockout mouse.  相似文献   

17.
Hyaluronic acid (HA) is a natural polysaccharide abundant in biological tissues with excellent potential for constructing synthetic extracellular matrix analogues. In this work, we established a simple and dependable approach to prepare hyaluronic acid-based hydrogels with controlled stiffness and cell recognition properties for use as cell-interactive substrates. This approach relied on a new procedure for the synthesis of methacrylate-modified HA macromers (HA-MA) and, on photorheometry allowing real time monitoring of gelation during photopolymerization. We showed in this way the ability to obtain gels that encompass the range of physiologically relevant elastic moduli while still maintaining the recognition properties of HA by specific cell surface receptors. These hydrogels were prepared from HA macromers having a degree of methacrylation <0.5, which allows to minimize compromising effects on the binding affinity of HA to its cell receptors due to high substitution on the one hand, and to achieve nearly 100% conversion of the methacrylate groups on the other. When the HA hydrogels were immobilized on glass substrates, it was observed that the attachment and the spreading of a variety of mammalian cells rely on CD44 and its coreceptor RHAMM. The attachment and spreading were also shown to be modulated by the elastic properties of the HA matrix. All together, these results highlight the biological potential of these HA hydrogel systems and the needs of controlling their chemical and physical properties for applications in cell culture and tissue engineering.  相似文献   

18.
Vinculin couples as a focal adhesion protein the extracellular matrix (ECM) through integrins to the actomyosin cytoskeleton. During the last years vinculin has become the focus of cell mechanical measurements and a key protein regulating the transmission of contractile forces. In earlier reports vinculin has been described as an inhibitor of cell migration on planar substrates, because knock-out of vinculin in F9 mouse embryonic carcinoma cells and mouse embryonic fibroblasts showed increased cell motility on 2D substrates. The role of vinculin in cell invasion through a 3D extracellular matrix is still fragmentarily investigated. This review presents vinculin in its role as a regulator of cellular mechanical functions. Contractile force generation is reduced when vinculin is absent, or enhanced when vinculin is present. Moreover, the generation of contractile forces is a prerequisite for cell invasion through a dense 3D ECM, where the pore-size is smaller than the diameter of the cell nucleus (<2 μm). Measurements of cell’s biophysical properties will be presented. In summary, vinculin’s leading role among focal adhesion proteins in regulating the mechanical properties of cells will be discussed.  相似文献   

19.
Hyaluronic acid (HA), an essential component of the extracellular matrix, is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and is involved in wound healing. Although numerous pieces of evidence demonstrate beneficial effects in promoting wound healing in diabetes, a systemic approach has never been tested. We used an incisional wound healing model in genetically diabetic mice to test the effects of systemic injection of HA. Diabetic (n = 56) and normoglycemic (n = 56) mice were subjected to incision and randomized (8 groups of 7 animals each) to receive HA at different doses, 7.5, 15 and 30 mg/kg/i.p., or vehicle (0.9% NaCl solution) for 12 days. At the end of the experiment animals were sacrificed and skin wounds were excised for histological, biochemical and molecular analysis. Histology revealed that the most effective dose to improve wound repair and angiogenesis in diabetic mice was 30 mg/kg. Furthermore HA injection (30 mg/kg) improved the altered healing pattern in diabetic animals, increased skin remodeling proteins TGF-β and transglutaminase-II and restored the altered expression of cyclin B1/Cdc2 complex. Evaluation of skin from diabetic animals injected with HA revealed also an increase in HA content, suggesting that systemic injection may be able to restore the reduced intracellular HA pool of diabetic mice. Finally HA markedly improved skin mechanical properties. These promising results, if confirmed in a clinical setting, may improve the care and management of diabetic patients.  相似文献   

20.
The spatiotemporal distribution of hyaluronan (HA), a major constituent of the vertebrate extracellular matrix, was analyzed during early embryonic development of Xenopus laevis. This polysaccharide is abundantly present in ventricular structures such as the blastocoel, the archenteron as well as later on in the hepatic cavity, the brain ventricles and the developing heart. At the blastula stage, HA was detected in the extracellular matrix of the ecto- and mesodermal primordia. Shortly before gastrulation, it becomes enriched at the basal site of the superficial cell layer of the ectoderm. During gastrulation, enhanced synthesis of HA takes place in the involuting marginal zone, shortly before invagination starts, hence, resulting in a torus-like deposition in the deep layer of the equatorial mesodermal primordium. After gastrulation, HA appears to accumulate within the extracellular matrix demarcating the primary germ layers. During tailbud stages, it is found highly enriched in many mesodermal derivatives, e.g., in mesenchyme, the heart, precordal cartilage and the lung primordia. Furthermore, extracellular matrix of the ventral mesodermal cell layer in the trunk region and the immediate proximity of blood vessels contain high amounts of HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号