首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iwai M  Cui TX  Kitamura H  Saito M  Shimazu T 《Cytokine》2001,13(1):60-64
The present study explored the changes in hepatic secretion of tumour necrosis factor (TNF) and interleukin 6 (IL-6) during the regenerative process of the liver, focusing on the role of Kupffer cells. The secretions of TNF and IL-6 from the perfused rat liver were increased after 67% partial hepatectomy, reaching a maximum at 48 h. The response of cytokine secretion induced by lipopolysaccharide (LPS: 1 microgram/ml) was also potentiated in regenerating liver. The secretion of TNF, but not that of IL-6, induced by LPS was almost totally suppressed by pretreatment of rats with gadolinium chloride, which depletes Kupffer cells. These results indicate that hepatic secretions of TNF and IL-6 are increased during the regenerative process of the liver. Kupffer cells play an important role in hepatic secretion of TNF, whereas the production of IL-6 can be achieved by other cells of the liver.  相似文献   

2.
Tissue deposition of protein adducts derived from ethanol metabolism and lipid peroxidation, has been suggested to play a role in the initiation of alcoholic liver disease. The mechanisms modulating adduct formation have, however, remained unclear. We used immunohistochemical methods to examine acetaldehyde (AA) and malondialdehyde (MDA) adducts and cytochrome P4502E1 and P4503A2 expression in rats after administration of (i) an ethanol-diet (n = 6), (ii) ethanol-diet plus gadolinium chloride (GdCl(3)), a selective Kupffer cell toxicant (n = 7), or (iii) control diet (n = 6). A 4 week ethanol treatment resulted in liver steatosis, necrosis, and inflammation and deposition of protein adducts with both AA and MDA, which colocalized with areas of fatty change. The intensities (mean +/- SD) of the immunohistochemical reactions for both AA (2.50 +/- 1.23) and MDA (3.00 +/- 1.10) adducts were significantly higher in the ethanol-fed animals than in the controls (0.083 +/- 0.20) (0.16 +/- 0.25) (p <.001). GdCl(3) prevented adduct accumulation, the mean immunohistochemistry scores being 0.86 +/- 1.07 for AA and 1.64 +/- 0.63 for MDA, the former showing a more striking reduction (p <.01). The hepatic cytochrome enzymes were not different in the ethanol-fed groups with or without GdCl(3). The data indicates that Kupffer cells are involved in the generation of protein adducts with both acetaldehyde and ethanol-induced lipid peroxidation products in alcoholic liver disease.  相似文献   

3.
It has been reported that hepatocyte metabolism and function can be modulated by the activated Kupffer cell through the release of different biomolecules like cytokines, eicosanoids, oxygen free radicals and enzymes. In relation to these paracrine factors involved in circuits of intercellular communication, the existence of a hepatic oxygen sensor located in the Kupffer cell has been postulated. According to this postulate the oxygen metabolism of the liver parenchymal cells could be under the control of the Kupffer cells. In order to study the role of the Kupffer cell in the reperfusion syndrome of the liver, a lobular ischaemia–reperfusion model was performed in rats with or without previous treatment with gadolinium chloride to block Kupffer cell function. Spontaneous chemiluminescence of the liver surface, oxygen uptake by tissue slices and tert-butyl hydroperoxide-initiated chemiluminescence determinations were performed to evaluate the oxygen metabolism and the oxy-radical generation by the liver. The lower basal photoemission, in parallel with a lower basal oxygen uptake registered in the hepatic lobes from the animals pretreated with gadolinium chloride clearly indicates that the gadolinium chloride-dependent functional inhibition of Kupffer cell leads to a downregulation of oxygen metabolism by the liver. Moreover, the intensity of oxidative stress exhibited by the postischaemic lobes appears to be closely linked with the Kupffer cell activity. On the basis of the data obtained we propose that a paracrine circuit between activated Kupffer cell and hepatocytes is an early key event in the induction of postischaemic oxidative stress in the liver. Furthermore the interference with the mitochondrial electron flow by some biomolecules released from the activated Kupffer cell, such as tumour necrosis factor, interleukins, eicosanoids, etc., would increase the rate of generation of reactive oxygen species by the inhibited mitochondrial respiratory chain. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease.  相似文献   

5.
Destruction of Kupffer cells with gadolinium chloride (GdCl(3)) and intestinal sterilization with antibiotics diminished ethanol-induced steatosis in the enteral ethanol feeding model. However, mechanisms of ethanol-induced fatty liver remain unclear. Accordingly, the role of Kupffer cells in ethanol-induced fat accumulation was studied. Rats were given ethanol (5 g/kg body wt) intragastrically, and tissue triglycerides were measured enzymatically. Kupffer cells were isolated 0-24 h after ethanol, and PGE(2) production was measured by ELISA, whereas inducible cyclooxygenase (COX-2) mRNA was detected by RT-PCR. As expected, ethanol increased liver triglycerides about threefold. This increase was blunted by antibiotics, GdCl(3), the dihydropyridine-type Ca(2+) channel blocker nimodipine, and the COX inhibitor indomethacin. Ethanol also increased PGE(2) production by Kupffer cells about threefold. This increase was also blunted significantly by antibiotics, nimodipine, and indomethacin. Furthermore, tissue triglycerides were increased about threefold by PGE(2) treatment in vivo as well as by a PGE(2) EP(2)/EP(4) receptor agonist, whereas an EP(1)/EP(3) agonist had no effect. Moreover, permeable cAMP analogs also increased triglyceride content in the liver significantly. We conclude that PGE(2) derived from Kupffer cells, which are activated by ethanol, interacts with prostanoid receptors on hepatocytes to increase cAMP, which causes triglyceride accumulation in the liver. This mechanism is one of many involved in fatty liver caused by ethanol.  相似文献   

6.
The interactions between alcohol and cytochrome P-450 enzymes have been well investigated. However, the data regarding the effect of alcohol on the regulation of UDP-glucuronosyltranferase (UGT) activity are less clear. The aim of the present study was to determine the role of alcohol in the regulation of UGT mRNA expression by using whole animal and primary cultured hepatocytes. Chronic ethanol feeding of rats significantly increased the expression of liver UGT1A1 mRNA to 177% of control. The mRNA levels for UGT1A5, UGT2B1 and UGT2B3 were also enhanced, but did not reach statistical significance. In cultured hepatocytes, treatment with either ethanol or isopentanol significantly increased the expression of UGT1A1, UGT1A5, UGT2B1, and UGT2B3 mRNAs, but to different degrees. The induction of UGT1A1 and UGT2B1 mRNAs by ethanol or isopentanol was time-dependent and maximal changes occurred at 48 h. The expression of UGT1A6 mRNA was not significantly modified by either ethanol or isopentanol. In conclusion, ethanol and isopentanol have direct roles in the regulation of UGT.  相似文献   

7.
We previously reported that dilinoleoylphosphatidylcholine (DLPC) decreases lipopolysaccharide-induced TNF-alpha generation by Kupffer cells of ethanol-fed rats by blocking p38, ERK1/2, and NF-kappaB activation. Here we show that DLPC also decreases TNF-alpha induction by acetaldehyde, a toxic metabolite released by ethanol oxidation. Acetaldehyde induces TNF-alpha generation with a maximal effect at 200 microM and activates p38 and ERK1/2; the latter in turn activates NF-kappaB. This effect is augmented in Kupffer cells of ethanol-fed rats, with upregulation of cytochrome P4502E1 by ethanol. DLPC decreases TNF-alpha generation by blocking p38, ERK1/2, and NF-kappaB activation. Likewise, SB203580, which abolishes p38 activation, and PD098059, which abrogates ERK1/2 and NF-kappaB activation, diminish TNF-alpha generation. Since increased TNF-alpha generation plays a pathogenic role in alcoholic liver disease, the DLPC action on Kupffer cells may explain, in part, its beneficial effects on liver cell injury after ethanol consumption.  相似文献   

8.
Chronic ethanol feeding sensitizes Kupffer cells to activation by lipopolysaccharide (LPS), leading to increased production of tumor necrosis factor-alpha (TNF-alpha). Adiponectin treatment protects mice from ethanol-induced liver injury. Because adiponectin has anti-inflammatory effects on macrophages, we hypothesized that adiponectin would normalize chronic ethanol-induced sensitization of Kupffer cells to LPS-mediated signals. Serum adiponectin concentrations were decreased by 45% in rats fed an ethanol-containing diet for 4 wk compared with pair-fed rats. Adiponectin dose dependently inhibited LPS-stimulated accumulation of TNF-alpha mRNA and peptide in Kupffer cells from both pair- and ethanol-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to both globular (gAcrp) and full-length adiponectin (flAcrp) than Kupffer cells from pair-fed controls with suppression at 10 ng/ml adiponectin after chronic ethanol feeding. Kupffer cells expressed both adiponectin receptors 1 and 2; chronic ethanol feeding did not change the expression of adiponectin receptor mRNA or protein. gAcrp suppressed LPS-stimulated ERK1/2 and p38 phosphorylation as well as IkappaB degradation at 100-1,000 ng/ml in Kupffer cells from both pair- and ethanol-fed rats. However, only LPS-stimulated ERK1/2 phosphorylation was sensitive to 10 ng/ml gAcrp. gAcrp also normalized LPS-stimulated DNA binding activity of early growth response-1 with greater sensitivity in Kupffer cells from rats fed chronic ethanol. In conclusion, these results demonstrate that Kupffer cells from ethanol-fed rats are more sensitive to the anti-inflammatory effects of both gAcrp and flAcrp. Suppression of LPS-stimulated ERK1/2 signaling by low concentrations of gAcrp was associated with normalization of TNF-alpha production by Kupffer cells after chronic ethanol exposure.  相似文献   

9.
Lipopolysaccharides (LPS) induces intrahepatic cholestasis and canalicular multispecific organic anion transporter (CMOAT/MRP2) plays a central role in hepatic bilirubin transport. This study examined the role of Kupffer cell in LPS-induced cholestasis. Rats were injected intravenously with LPS. Kupffer cells were inactivated with gadolinium chloride (Gd). CMOAT/MRP2 mRNA expression was time- and dose-dependently decreased by LPS injection with a decrease in bile flow and an increase in serum bilirubin level. Gd pretreatment inhibited decrease in CMOAT/MRP2 mRNA and bile flow, and increase in serum bilirubin. Kupffer cell-conditioned medium decreased CMOAT/MRP2 expression. Addition of anti-IL-1 or anti-TNFalpha antibody restored CMOAT/MRP2 expression, whereas IL-1 and TNFalpha decreased the expression. MAP kinases were activated by addition of the conditioned medium, and addition of PD98059 or SB203580 restored CMOAT/MRP2 expression. These results suggest that LPS activates Kupffer cells to secrete IL-1 and TNFalpha, which in turn activate MAP kinases and decrease CMOAT/MRP2 expression.  相似文献   

10.
Tumor necrosis factor-α (TNF-α) is released from blood-free perfused rat liver by the fungal metabolite ochratoxin A. Here we have identified Kupffer cells as the sole source of OTA-mediated cytokine release. If single cell preparation of Kupffer cells, hepatocytes, or sinusoidal endothelial cells were prepared from rat livers, only Kupffer cells released TNF-α upon incubation with 2.5 μmol/l OTA. OTA failed to induce TNF-α release in the blood-free perfused isolated rat liver when Kupffer cells were blockedin vitro by 15 μmol/l gadolinium chloride. When rats were pretreatedin vivo with the Kupffer cell depleting clodronate liposomes, OTA-mediated TNF-α release was abrogated in the isolated perfused liver model.  相似文献   

11.
Harvesting trauma to the graft dramatically decreases survival after liver transplantation. Since activated Kupffer cells play a role in primary nonfunction, the purpose of this study was to test the hypothesis that organ manipulation activates Kupffer cells. To mimic what occurs with donor hepatectomy, livers from Sprague-Dawley rats underwent dissection with or without gentle organ manipulation in a standardized manner in situ. Perfused livers exhibited normal values for O(2) uptake (105 +/- 5 micromol. g(-1). h(-1)) measured polarigraphically; however, 2 h after organ manipulation, values increased significantly to 160 +/- 8 micromol. g(-1). h(-1) and binding of pimonidazole, a hypoxia marker, increased about threefold (P < 0.05). Moreover, Kupffer cells from manipulated livers produced three- to fourfold more tumor necrosis factor-alpha and PGE(2), whereas intracellular calcium concentration increased twofold after lipopolysaccharide compared with unmanipulated controls (P < 0.05). Gadolinium chloride and glycine prevented both activation of Kupffer cells and effects of organ manipulation. Furthermore, indomethacin given 1 h before manipulation prevented the hypermetabolic state, hypoxia, depletion of glycogen, and release of PGE(2) from Kupffer cells. These data indicate that gentle organ manipulation during surgery activates Kupffer cells, leading to metabolic changes dependent on PGE(2) from Kupffer cells, which most likely impairs liver function. Thus modulation of Kupffer cell function before organ harvest could be beneficial in human liver transplantation and surgery.  相似文献   

12.
Recent studies support the hypothesis that non parenchymal cells (mainly macrophages) may play a role in the metabolism and cellular effects of paracetamol. In order to investigate this hypothesis, male Wistar rats were intravenously injected with either 7.5 mg/kg gadolinium chloride (Gd+) or NaCl 0.9% (Gd-). The treatment with GdCl3 decreased the number and the function of Kupffer cells in liver tissue, as assessed by the histological examination of the liver after colloidal carbon injection in the portal vein. Precision-cut liver slices (PCLS) were prepared from both groups of rats and cultured for 8h in Waymouth's medium in the presence and absence of 5 mM paracetamol. Interestingly, PCLS obtained from Gd+ rats exhibited a lower release of tumor necrosis factor (TNF-alpha) and a better viability than PCLS from control (Gd-) rats. Incubation with paracetamol led to a decreased glycogen level in liver slices from Gd+ or Gd-, without modifying neither liver morphology nor ATP level nor LDH release. A higher proportion of paracetamol glucuronide, was secreted from the slices obtained from Gd+ rats. These data suggest that Kupffer cells could affect the viability of PCLS in culture and are involved in the regulation of phase II metabolism in the adjacent hepatocytes. We propose that PCLS in culture is a suitable model to elucidate the biochemical mechanism underlying the modulation of metabolism occurring through hepatocytes-Kupffer cells interactions.  相似文献   

13.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

14.
Administration of phorbol 12-myristate 13-acetate (PMA) to rats in vivo resulted in the induction of ornithine decarboxylase activity in the liver which could be blocked by preinjection of indomethacin, a cyclooxygenase inhibitor. In vitro administration of PMA to primary cultures of rat parenchymal cells did not lead to an induction of ornithine decarboxylase activity. It was investigated to what extent non-parenchymal liver cells could play an intermediary role in the expression of the PMA effect on ornithine decarboxylase activity in parenchymal liver cells. Addition of conditioned medium from PMA-activated Kupffer cells to cultured parenchymal cells led to the induction of ornithine decarboxylase activity in parenchymal cells. This effect was not observed with conditioned medium from untreated Kupffer cells or from Kupffer cells treated with PMA plus indomethacin. Conditioned media from PMA-treated or untreated endothelial liver cells were ineffective in the induction of ornithine decarboxylase activity in parenchymal liver cells. Prostaglandin D2, the main eicosanoid produced by Kupffer cells, was able to stimulate the synthesis of ornithine decarboxylase in parenchymal liver cells (up to 40-fold) in a dose-dependent way. Prostaglandin (PG) D2 appeared to be a more potent inducer of ornithine decarboxylase activity in parenchymal cells than PGE1 and PGE2. It is concluded that intercellular communication inside the liver mediated by prostaglandins derived from activated Kupffer cells may form a mechanism to induce synthesis of specific proteins in parenchymal cells.  相似文献   

15.
Sandor Szabo 《Life sciences》1983,33(20):1975-1980
Somatostatin exerts hormonal and neuroendocrine effects. Since it prevents several organ injuries and systemic intoxications, we tested the hypothesis that activation of Kupffer cells might be one mechanism of the beneficial actions of this peptide. The data presented here demonstrate that somatostatin given i.v. in rats dose- and time-dependently accelerated the clearance of colloidal carbon from the blood and enhanced the uptake of carbon in the liver. On a weight basis, somatostatin was more potent than the RES stimulant zymosan or RES blocker gadolinium chloride. Thus, somatostatin might modulate Kupffer cells and possibly other macrophages, and these effects may have a role in the physiologic or pharmacologic actions of this peptide.  相似文献   

16.
17.
The aim of this work was to determine if the action mechanism of gadolinium on CCl(4)-induced liver damage is by preventing lipid peroxidation (that may be induced by Kupffer cells) and its effects on liver carbohydrate metabolism. Four groups of rats were treated with CCl(4), CCl(4)+GdCl(3), GdCl(3), and vehicles. CCl(4) was given orally (0.4 g 100 g(-1) body wt.) and GdCl(3) (0.20 g 100 g(-1) body wt.) was administered i.p. All the animals were killed 24 h after treatment with CCl(4) or vehicle. Glycogen and lipid peroxidation were measured in liver. Alkaline phosphatase, gamma-glutamyl transpeptidase, alanine amino transferase activities and bilirubins were measured in rat serum. A liver histological analysis was performed. CCl(4) induced significant elevations on enzyme activities and bilirubins; GdCl(3) completely prevented this effect. Liver lipid peroxidation increased 2.5-fold by CCl(4) treatment; this effect was also prevented by GdCl(3). Glycogen stores were depleted by acute intoxication with CCl(4). However, GdCl(3) did not prevent this effect. The present study shows that Kupffer cells may be responsible for liver damage induced by carbon tetrachloride and that lipid peroxidation is produced or stimulated by Kupffer cells, since their inhibition with GdCl(3) prevented both lipid peroxidation and CCl(4)-induced liver injury.  相似文献   

18.
Biliary excretion is the main route of disposal of bilirubin and impaired excretion results in jaundice, a well recognisable symptom of liver disease. Conjugation of bilirubin in the liver is essential for its clearance. The glucuronidation of bilirubin is catalysed by the microsomal UDP-glucuronosyltransferase UGT1A1. Patients with Crigler-Najjar syndrome type 1 and Gunn rats, mutant strain of the Wistar rats, bear an autosomal recessive disorder resulting in hyperbilirubinemia. The aim of this work is to add new data about activity of UGT1A1 during the perinatal period and adult life. The results showed that activity of UGT1A1 is detectable from day 22 of the gestation. After birth, activity of UGT1A1 gradually increases and reaches the levels of adult life. Furthermore, bilirubin azopigments have been separated and characterized by thin layer chromatography. We have found that concentration of samples by evaporation and ulterior storing at -20 degrees C seemed to be suitable for the maintenance of samples.  相似文献   

19.
Systemic application of first-generation adenovirus induces pathogenic effects in the liver. To begin unraveling the mechanisms underlying early liver toxicity after adenovirus infusion, particularly the role of macrophage activation and expression of viral genes in transduced target cells, first-generation adenovirus or adenovirus vectors that lacked most early and late gene expression were administered to C3H/HeJ mice after transient depletion of Kupffer cells by gadolinium chloride treatment. Activation of NF-kappaB, and the serum levels of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) were studied in correlation with liver damage, apoptosis, and hepatocellular DNA synthesis. While Kupffer cell depletion nearly eliminated adenovirus-induced TNF release, it resulted in a more robust IL-6 release. These responses were greatly reduced in animals receiving the deleted adenovirus. Although there were quantitative differences, NF-kappaB activation was observed within minutes of first-generation or deleted adenovirus vector administration regardless of the status of the Kupffer cells, suggesting that the induction is related to a direct effect of the virus particle on the hepatocyte. Early liver toxicity as determined by serum glutamic-pyruvic transaminase elevation and inflammatory cell infiltrates appeared to be dependent on adenovirus-mediated early gene expression and intact Kupffer cell function. Kupffer cell depletion had little effect on adenovirus-mediated hepatocyte apoptosis but did increase hepatocellular DNA synthesis. Finally, Kupffer cell depletion decreased the persistence of transgene (human alpha1-antitrypsin [hAAT]) expression that was associated with a more pronounced humoral immune response against hAAT. The elucidation of these events occurring after intravenous adenovirus injection will be important in developing new vectors and transfer techniques with reduced toxicity.  相似文献   

20.
Cadmium (Cd) is a known industrial and environmental pollutant. In the present work, an in vivo spin-trapping technique was used in conjunction with electron spin resonance (ESR) spectroscopy to investigate free radical generation in rats following administration of cadmium chloride (CdCl2, 40 micromol/kg) and the spin trapping agent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN, 1 g/kg). In Cd-treated rats, POBN radical adducts were formed in the liver, were excreted into the bile, and exhibited an ESR spectrum consistent with a carbon-centered radical species probably derived from endogenous lipids. Isotope substitution of dimethyl sulfoxide [(CH3)2SO] with 13C demonstrated methyl radical formation (POBN/*13CH3). This adduct indicated the production of hydroxyl radical, which reacted with [(13CH3)2SO] to form *13CH3, which then reacted with POBN to form POBN/*13CH3. Depletion of hepatic glutathione by diethyl maleate significantly increased free radical production, whereas inactivation of Kupffer cells by gadolinium chloride and chelation of iron by desferal inhibited it. Treatment with the xanthine oxidase inhibitor allopurinol, the catalase inhibitor aminobenzotriazole, or the cytochrome P450 inhibitor 3-amino-1,2,4-triazole had no effect. This is the first study to show Cd generation of reactive oxygen- and carbon-centered radical species by involvement of both iron mediation through iron-catalyzed reactions and activation of Kupffer cells, the resident liver macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号