首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 1 (HPV-1) were determined at 2.5 nm resolution by cryoelectron microscopy and three dimensional image reconstruction techniques. As expected, the reconstructions showed that both viruses consist of a T = 7 icosahedral capsid (approximately 60 nm in diameter) which surrounds a nucleohistone core. The capsid morphologies of the two viruses are nearly indistinguishable. Each capsid consists of a shell layer (approximately 2 nm thick) of nearly continuous density from which capsomers project radially to a maximum height of approximately 5.8 nm. The five-coordinate (pentavalent) and six-coordinate (hexavalent) capsomers both exhibit distinct five-fold axial symmetry as was observed for SV40 and polyoma viruses. Thus, both genera (papilloma and polyoma) of the papovavirus family have now been shown to have the characteristic "all-pentamer" capsid construction. BPV-1 and HPV-1 capsomers consist of a thick (8.6 nm diameter) trunk that broadens distally to form a regular five-pointed, star-shaped head, and proximally to create the shell layer where capsomers associate. A cylindrical channel (approximately 2.8 nm diameter) extends along the axis of each capsomer from the interior of the virus to a point approximately half way to the capsomer surface. Computationally sectioned views of individual capsomers displayed at decreasing radii show that each of the five capsomer subunits (in both pentavalent and hexavalent capsomers) makes a pronounced (30 degrees) left-handed twist just above the outer surface of the capsid shell. Similar views of the reconstructions also clarify the morphology of intercapsomer contacts. For example, they show how hexavalent capsomers coordinate six neighboring capsomers despite the fact that they contain only five subunits. The system of intercapsomer contacts is indistinguishable in BPV-1 and HPV-1, but quite different from that reported for polyoma virus capsids assembled in vitro from the major capsid protein, VP1 (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea. 1989. Biophys. J. 56:887-900). Thus, because both polyoma and papilloma viruses have all-pentamer capsids, it appears that intracapsomer subunit-subunit interactions which stabilize pentameric capsomers are better preserved evolutionarily than those involved in capsomer-capsomer contacts.  相似文献   

2.
The three-dimensional crystal structure of the empty capsid of Physalis mottle tymovirus has been determined to 3.2 A resolution. The empty capsids crystallized in the space group P1, leading to 60-fold non-crystallographic redundancy. The known structure of Physalis mottle virus was used as a phasing model to initiate the structure determination by real-space electron-density averaging. The main differences between the structures of the native and the empty capsids were in residues 10 to 28 of the A-subunit, residues 1 to 9 of the B-subunit and residues 1 to 5 of the C-subunit, which are ordered only in the native virus particles. An analysis of the subunit disposition reveals that the virus has expanded radially outward by approximately 1.8 A in the empty particles. The A-subunits move in a direction that makes 10 degrees to the icosahedral 5-fold axes of symmetry. The B and C-subunits move along vectors making 12 degrees and 15 degrees to the quasi 6-fold axes. The quaternary organization of the pentameric and hexameric capsomeres are not altered significantly. However, the pentamer-hexamer contacts are reduced. Therefore, encapsidation of RNA appears to cause a reduction in the particle radius concomittant with the ordering of the N-terminal arm in the three subunits. These structural changes in Physalis mottle virus appear to be larger than the corresponding changes observed in viruses for which both the empty and full particle structures have been determined.  相似文献   

3.
The capsid proteins of papillomavirus self-assemble to form empty capsids or virus-like particles that appear quite similar to naturally occurring virions by conventional electron microscopy. To characterize such virus-like particles more fully, cryoelectron microscopy and image analysis techniques were used to generate three-dimensional reconstructions of capsids produced by vaccinia virus recombinants (V capsids) that expressed human papillomavirus type 1 L1 protein only or both L1 and L2 proteins. All V capsids had 72 pentameric capsomers arranged on a T = 7 icosahedral lattice. Each particle (approximately 60 nm in diameter) consisted of an approximately 2-nm-thick shell of protein with a radius of 22 nm with capsomers that extend approximately 6 nm from the shell. At a resolution of 3.5 nm, both V capsid structures appear identical to the capsid structure of native human papillomavirus type 1 (T. S. Baker, W. W. Newcomb, N. H. Olson, L. M. Cowsert, C. Olson, and J. C. Brown, Biophys. J. 60:1445-1456, 1991), thus implying that expressed and native capsids are structurally equivalent.  相似文献   

4.
An antigenic determinant common to the major capsid polypeptide (VP1) of simian virus 40 (SV40) and polyoma virus is described. Antisera prepared against intact viral particles reacted only with cells infected with the homologous virus by immunofluorescence tests (IF). However, antisera prepared against disrupted SV40 particles reacted in IF with both polyoma- and SV40-infected permissive cells. The cross-reaction with polyoma was localized to VP1 by the following evidence. (i) The IF cross-reaction was inhibited by preincubation of the antiserum with purified SV40 VP1; (ii) purified radiolabeled polyoma VP1 was precipitated by the cross-reactive serum, and this reaction was inhibited by unlabeled SV40 VP1; (iii) other antisera prepared against purified SV40 VP1 or polyoma VP1 reacted in IF with both SV40- and polyma-infected permissive cells. These cross-reacting antisera also reacted in IF with permissive cells infected with BK virus, rabbit kidney vacuolating virus, and the stumptailed macaque virus, suggesting that all members of the polyoma-SV40 subgroup share a common antigenic determinant located in their major capsid polypeptides.  相似文献   

5.
The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.  相似文献   

6.
The capsids of the spherical viruses all show underlying icosahedral symmetry, yet they differ markedly in capsomere shape and in capsomere position and orientation. The capsid patterns presented by the capsomere shapes, positions, and orientations of three viruses (papilloma, SV40, and N beta V) have been generated dynamically through a bottom-up procedure which provides a basis for understanding the patterns. A capsomere shape is represented in two-dimensional cross-section by a mass or charge density on the surface of a sphere, given by an expansion in spherical harmonics, and referred to herein as a morphological unit (MU). A capsid pattern is represented by an icosahedrally symmetrical superposition of such densities, determined by the positions and orientations of its MUs on the spherical surface. The fitness of an arrangement of MUs is measured by an interaction integral through which all capsid elements interact with each other via an arbitrary function of distance. A capsid pattern is generated by allowing the correct number of approximately shaped MUs to move dynamically on the sphere, positioning themselves until an extremum of the fitness function is attained. The resulting patterns are largely independent of the details of both the capsomere representation and the interaction function; thus the patterns produced are generic. The simplest useful fitness function is sigma 2, the average square of the mass (or charge) density, a minimum of which corresponds to a "uniformly spaced" MU distribution; to good approximation, the electrostatic free energy of charged capsomeres, calculated from the linearized Poisson-Boltzmann equation, is proportional to sigma 2. With disks as MUs, the model generates the coordinated lattices familiar from the quasi-equivalence theory, indexed by triangulation numbers. Using fivefold MUs, the model generates the patterns observed at different radii within the T = 7 capsid of papilloma and at the surface of SV40; threefold MUs give the T = 4 pattern of Nudaurelia capensis beta virus. In all cases examined so far, the MU orientations are correctly found.  相似文献   

7.
The structure of the icosahedral capsid of the H-1 parvovirus was probed by chemical cross-linking methods. Treatment of empty capsids with high-molecular-weight polyethylene glycols resulted in irreversible aggregation of the minor capsid protein VP1. Multimers of VP1 containing at least five and perhaps six molecules were obtained, but only with empty capsids and not with the full, DNA-containing virus. Cross-linking of the empty capsids with dimethylsuberimidate confirmed the assignments of the products formed after treatment with polyethylene glycol. With dimethylsuberimidate the most abundant product was a heterologous dimer containing VP1 and the major capsid protein VP2'. A small amount of homologous VP2' dimer was also obtained, but the majority of VP2' remained unreacted even at high concentrations of dimethylsuberimidate. The capsid proteins of the full virus, on the other hand, were completely unreactive to dimethylsuberimidate. The data suggest that the minor protein VP1 may be clustered in the capsid and perhaps composes one or two of the morphological units of the icosahedral shell.  相似文献   

8.
Desmodium yellow mottle virus is a 28 nm diameter, T=3 icosahedral plant virus of the tymovirus group. Its structure has been solved to a resolution of 2.7 A using X-ray diffraction analysis based on molecular replacement and phase extension methods. The final R value was 0.151 (R(free)=0.159) for 134,454 independent reflections. The folding of the polypeptide backbone is nearly identical with that of turnip yellow mosaic virus, as is the arrangement of subunits in the virus capsid. However, a major difference in the disposition of the amino-terminal ends of the subunits was observed. In turnip yellow mosaic virus, those from the B and C subunits comprising the hexameric capsomeres formed an annulus about the interior of the capsomere, while the corresponding N termini of the pentameric capsomere A subunits were not visible at all in electron density maps. In Desmodium yellow mottle tymovirus, amino termini from the A and B subunits combine to form the annuli, thereby resulting in a much strengthened association between the two types of capsomeres and an, apparently, more stable capsid. The first 13 residues of the C subunit were invisible in electron density maps. Two ordered fragments of single-stranded RNA, seven and two nucleotides in length, were observed. The ordered water structure of the virus particle was delineated and required 95 solvent molecules per protein subunit.  相似文献   

9.
Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.  相似文献   

10.
The polypeptide composition of labeled BK virus was compared with that of simian virus 40 (SV40) and polyoma virus by co-electrophoresis of disrupted virions in polyacrylamide gels containing approximately 73% of the capsid protein and had a molecular weight of 39,000. It was smaller than VP1 of SV40 and polyoma virus. The other polypeptides of BK virus were similar in molecular weight to those of SV40. A comparison of the proteins of BK virus and SV40 iodinated with chloramine T before and after disruption in alkaline buffer at pH 10.5 revealed differences between the two viruses in the number and distribution of tyrosines available for iodination. The tryptic peptides of VP1, VP3, VP4, and VP5 combined of SV40 were compared with those of the same polypeptides of BK virus. Among the 19 peptides of VP1 resolved, only two were common to both viruses. The analyses of VP4 and VP5, the histone-like proteins, however, showed more similarity between the viruses, with 6 of 15 resolved peptides in common. The tryptic digests of VP3 were completely different.  相似文献   

11.
Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side.  相似文献   

12.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

13.
Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40 degrees C and 60 degrees C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50 degrees C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment.  相似文献   

14.
Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.  相似文献   

15.
Phosphorylation of Simian Virus 40 Proteins in a Cell-Free System   总被引:8,自引:8,他引:0       下载免费PDF全文
We have shown previously that all the structural proteins of simian virus 40 (SV40) are phosphoproteins. Virus phosphorylated in vivo could be further phosphorylated with exogenous cellular protein kinases in a cell-free system containing gamma-(32)P-ATP as phosphate donor. In intact infectious virus only polypeptides 1 and 2 (mol wt 49,000 and 40,800, respectively) were further phosphorylated in vitro. However, when infectious SV40 was partially disrupted, treated with nucleases, and then phosphorylated in vitro, all five structural polypeptides accepted additional phosphate groups. Similarly, all polypeptides of intact empty capsids, derived from infected cells, were further phosphorylated in vitro. Phosphorylation of empty capsids and infectious SV40 in vitro was enhanced from 4- to 11-fold after prior treatment of virus with alkali. The phosphate group was linked only to serine residues of the viral polypeptides phosphorylated both in vitro and in vivo.  相似文献   

16.
Purified polyoma empty capsids and polyoma type I DNA interact in a cell-free system to form nucleoprotein complexes. Complexes that consist of one, two, three, and four empty capsids per DNA molecule have been detected. Polyoma virions or capsomers do not react with added DNA to form such complexes.  相似文献   

17.
The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.  相似文献   

18.
The nucleotide sequence of the late region of the polyoma virus genome has been deduced, which codes for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. The amino acid sequence of VP1 predicted from the nucleotide sequence is in good agreement with the partial N-terminal sequence 1 and amino acid composition of VP1 2,3. When both nucleotide and amono acid sequences are compared with their counterparts in the related viruses, SV40 4,5 and BKV (R. Young, personal communication), extensive homologies are found along the entire regions of the viral genes. Maximum homologies appear to occur in the regions which code for the C-terminal of VP1, on the contrary of the result of heteroduplex analysis 6 with 6 with SV40 and polyoma virus DNAs.  相似文献   

19.
Sesbania mosaic virus (SeMV) capsids are stabilized by protein-protein, protein-RNA and calcium-mediated protein-protein interactions. The N-terminal random domain of SeMV coat protein (CP) controls RNA encapsidation and size of the capsids and has two important motifs, the arginine-rich motif (ARM) and the beta-annulus structure. Here, mutational analysis of the arginine residues present in the ARM to glutamic acid was carried out. Mutation of all the arginine residues in the ARM almost completely abolished RNA encapsidation, although the assembly of T=3 capsids was not affected. A minimum of three arginine residues was found to be essential for RNA encapsidation. The mutant capsids devoid of RNA were less stable to thermal denaturation when compared to wild-type capsids. The results suggest that capsid assembly is entirely mediated by CP-dependent protein-protein inter-subunit interactions and encapsidation of genomic RNA enhances the stability of the capsids. Because of the unique structural ordering of beta-annulus segment at the icosahedral 3-folds, it has been suggested as the switch that determines the pentameric and hexameric clustering of CP subunits essential for T=3 capsid assembly. Surprisingly, mutation of a conserved proline within the segment that forms the beta-annulus to alanine, or deletion of residues 48-53 involved in hydrogen bonding interactions with residues 54-58 of the 3-fold related subunit or deletion of all the residues (48-59) involved in the formation of beta-annulus did not affect capsid assembly. These results suggest that the switch for assembly into T=3 capsids is not the beta-annulus. The ordered beta-annulus observed in the structures of many viruses could be a consequence of assembly to optimize intersubunit interactions.  相似文献   

20.
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号