首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mean litter size in gad/gad females was significantly lower than in normal females (+/+ and gad/+) in intra- and inter-strain crosses. The reduction in litter size was not dependent on the genotypes of the males, but could be attributed to the gad/gad females themselves. The numbers of corpora lutea and implants in gad/gad females were slightly reduced as compared with those in the controls, but the number of live fetuses was significantly lower than that in normal females 14 days after copulation (P less than 0.02). Hence, reduced litter size in gad/gad females was accounted for mostly by embryonic and fetal death after implantation, which was inferred to be due to impaired uterine function.  相似文献   

2.
Local axonal degeneration is a common pathological feature of peripheral neuropathies and neurodegenerative disorders of the central nervous system, including Alzheimer's disease, Parkinson's disease, and stroke; however, the underlying molecular mechanism is not known. Here, we analyzed the gracile axonal dystrophy (gad) mouse, which displays the dying-back-type of axonal degeneration in sensory neurons, to find the molecules involved in the mechanism of axonal degeneration. The gad mouse is analogous to a null mutant of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1). UCH-L1 is a deubiquitinating enzyme expressed at high levels in neurons, as well as testis and ovary. In addition, we recently discovered a new function of UCH-L1—namely to bind to and stabilize mono-ubiquitin in neurons, and found that the level of mono-ubiquitin was decreased in neurons, especially in axons of the sciatic nerve, in gad mice. The low level of ubiquitin suggests that the target proteins of the ubiquitin proteasome system are not sufficiently ubiquitinated and thus degraded in the gad mouse; therefore, these proteins may be the key molecules involved in axonal degeneration. To identify molecules involved in axonal degeneration in gad mice, we compared protein expression in sciatic nerves between gad and wild-type mice at 2 and 12 weeks old, using two-dimensional difference gel electrophoresis. As a result, we found age-dependent accumulation of several proteins, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 14-3-3, in gad mice compared with wild-type mice. Histochemical analyses demonstrated that GAPDH and 14-3-3 were localized throughout axons in both gad and wild-type mice, but GAPDH accumulated in the axons of gad mice. Recently, it has been suggested that a wide range of neurodegenerative diseases are characterized by the accumulation of intracellular and extracellular protein aggregates, and it has been reported that oxidative stress causes the aggregation of GAPDH. Furthermore, histochemical analysis demonstrated that sulfonated GAPDH, a sensor of oxidative stress that elicits cellular dysfunction, was expressed in the axons of gad mice, and 4-hydroxy-2-nonenal, a major marker of oxidative stress, was also only detected in gad mice. Our findings suggest that GAPDH may participate in a process of the dying-back-type of axonal degeneration in gad mice and may provide valuable insight into the mechanisms of axonal degeneration.  相似文献   

3.
We investigated motor function and pain sensation in the gracile axonal dystrophy (GAD) mutant mouse, using the tail-flick test and the rotarod test. GAD (gad/gad) and normal sib mice (gad/+ or +/+) were used between 5 and 11 weeks of age, during which time the behavioral signs of GAD mice shifted from sensory ataxia (about 4 to 8 weeks of age) to paresis (after about 9 weeks of age). In the tail-flick test, significant shortening of latency was observed at 6 and 8 weeks of age in female GAD mice, in comparison with normal female mice. This may be related to dysfunction or degeneration of axons in the fasiculus gracilis, whose collaterals are thought to control the transmission of nociceptive information. In the rotarod test, a cumulative chi 2 test showed significant reduction in the performance times of GAD mice beginning at 5 and 6 weeks of age in males and females, respectively, indicating that the rotarod test can detect the development of motor incoordination as early as these ages. The performance times of GAD mice dropped sharply from 9 weeks of age onwards, and this is believed to reflect the progression of paresis. The rotarod test therefore appears to be a good method of quantifying behavioral changes in GAD mice and to be applicable both to objective selection of GAD mice before 8 weeks of age and to evaluation of drugs to treat ataxia or paresis.  相似文献   

4.
Ubiquitin carboxyl-terminal hydrolase L-1 (UCH L-1) is a crucial enzyme for proteasomal protein degradation that generates free monomeric ubiquitin. Our previous proteomic study identified UCH L-1 as one specific target of protein oxidation in Alzheimer's disease (AD) brain, establishing a link between the effect of oxidative stress on protein and the proteasomal dysfunction in AD. However, it is unclear how protein oxidation affects function, owing to the different responses of proteins to oxidation. Analysis of systems in which the oxidized protein displays lowered or null activity might be an excellent model for investigating the effect of the protein of interest in cellular metabolism and evaluating how the cell responds to the stress caused by oxidation of a specific protein. The gracile axonal dystrophy (gad) mouse is an autosomal recessive spontaneous mutant with a deletion on chromosome 5 within the gene encoding UCH L-1. The mouse displays axonal degeneration of the gracile tract. The aim of this proteomic study on gad mouse brain, with dysfunctional UCH L-1, was to determine differences in brain protein oxidation levels between control and gad samples. The results showed increased protein oxidation in thioredoxin peroxidase (peroxiredoxin), phosphoglycerate mutase, Rab GDP dissociation inhibitor alpha/ATP synthase and neurofilament-L in the gad mouse brain. These findings are discussed with reference to the effect of specific protein oxidation on potential mechanisms of neurodegeneration that pertain to the gad mouse.  相似文献   

5.
6.
The synthesis of prostanoids by the Sertoli cell was assessed as part of a study on the role of vitamin E in maintaining spermatogenesis. Analyses of eicosanoid synthesis from endogenous substrate were carried out using freshly isolated Sertoli-cell-enriched preparations from both pre-pubertal and adult rats fed purified diets with and without vitamin E, as well as cells carried in primary culture. Freshly isolated cells from both the immature and fully differentiated adult testes produced PGI2 (prostaglandin I2) and PGE2, but PGF2 alpha was produced only by cells of the adult vitamin E-deficient rat. Cells from adult controls synthesized PGF2 alpha after primary culture. In contrast with other hormone responses of this cell, which are refractory in the adult, FSH (follitropin) potentiated prostaglandin production by freshly isolated cells of both immature and adult rats. The FSH response of Sertoli cells from immature animals did not change after primary culture. Adult cells were refractory to the hormone after culture, but the total amounts of prostaglandins produced by these cells were 10-fold higher than by either freshly isolated or cells of the immature in culture. Analogues of cyclic AMP did not potentiate prostaglandin synthesis. However, mepacrine, a phospholipase inhibitor, blocked the FSH effect. The finding that Sertoli cells synthesize prostaglandins and FSH enhances prostaglandin production implicates a potential role for eicosanoids in spermatogenesis and suggests that vitamin E may affect intratesticular regulators.  相似文献   

7.
Activation of polymorphonuclear neutrophils (PMNL) leads to the release of arachidonate from cellular phospholipids via a phospholipase A2, and conversion of products of the 5-lipoxygenase pathway. Evidence to date indicates the dietary vitamin E ((R,R,R)-alpha-tocopherol) can influence both cyclooxygenase and phospholipase A2 activities and that the effect of this vitamin is cell/tissue specific. The present study was undertaken in order to examine the effects of varying dietary tocopherol on PMNL tocopherol content and 5-lipoxygenase product profile using the ionophore A23187 as stimulant in the presence and absence of exogenous arachidonate. Feeding semi-purified diets containing 0, 30 or 3000 ppm of (R,R,R)-alpha-tocopherol acetate to weanling rats for 17 weeks resulted in a dose-related enrichment of PMNL tocopherol. Stimulation of PMNL elicited a significant and rapid loss of tocopherol. When PMNL were stimulated with A23187 alone, the synthesis of 5-HETE, LTB4 and 19-hydroxy-LTB4 was decreased in proportion to increasing dietary tocopherol concentrations. However, when exogenous arachidonate was provided with A23187, intermediate amounts of dietary tocopherol (30 ppm) still suppressed the formation of 5-lipoxygenase products, but high doses (3000 ppm) did not have any additional inhibitory effect. This differential response to high concentrations of vitamin E in the presence and absence of exogenous arachidonate highly suggest that at these concentrations, tocopherol may act principally at the level of substrate release whereas at lower concentrations, 5-lipoxygenase is inhibited. Data from this study demonstrated that attenuation of the formation of 5-lipoxygenase products in PMNL can be achieved by dietary vitamin E enrichment.  相似文献   

8.
9.
Peroxidative damage to DNA was studied in rats fed either a diet with 10% tocopherol-stripped corn oil and 30 IU DL-alpha-tocopherol acetate/kg (group A), the same diet without vitamin E (group B), a diet with 24% corn oil without vitamin E (group C), or the diet of group A for 10 months and then the diet of group C for 4 months (group D). After 3, 6, 9, and 14 months of feeding the diets, body weights, motoric activities, testicular weights, and lipid-soluble fluorophores in testes were measured. Groups A and B had higher hepatic DNA template activities at 9 and 14 months than group C, and group A had higher testicular DNA template activities than groups B and C at 6, 9, and 14 months. Hepatic DNA template activity of group C decreased from 6 to 9 and from 9 to 14 months. Group C hepatic DNA transcribed less long RNA than that of groups B and D, and more short RNA than groups B and D. Group A testicular DNA transcribed more medium-length RNA than that of groups B and D, and less short RNA than that of groups B, C, and D. DNA-bound tryptophan and DNA crosslinking were inversely related to DNA template activities. DNA damage correlated with other biochemical and physiological changes that are characteristic of cellular impairment in aging and disease.  相似文献   

10.
为探讨维生素E(VE)对中华鳖(Pelodiscus sinensis)幼鳖的生长、肝脏VE和血清皮质醇的影响,通过特定生长率、高压液相色谱法和放免法,我们测定了中华鳖幼鳖的生长、肝脏VE和血清皮质醇含量。发现VE添加量为1000和5000mg/kg的两组,能明显降低中华鳖幼鳖的生长。维生素E添加量为500、1000和5000mg/kg的三组,肝脏维生素E含量明显高于对照组,VE添加量在0—1000mg/kg的范围时,肝脏VE的含量随着饲料中VE含量的增加呈指数式增加,并且在VE添加量为5000kg/kg的一组基本达到饱和。维生素E添加量为0和50mg/kg的2组,其血清皮质醇的平均值明显高于维生素E添加量为250、500、1000和5000mg/kg的4组的平均值。上述结果表明:高剂量的VE降低了中华鳖幼鳖的生长和血清皮质醇的含量;在一定剂量范围内,肝脏VE随着饲料中VE含量的增加而升高。  相似文献   

11.
12.
The gracile axonal dystrophy (gad) mice are known to have a deletion within the gene encoding ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) and show hereditary sensory deterioration and motor paresis. Expression of Uch-L1 is reported to be almost limited to the nervous system and testis. To understand whether Uch-L1, one of the major ubiquitin carboxy-terminal hydrolase (UCH) isozymes in the testis, affects spermatogenesis and other UCH isozymes (Uch-L3, L4 and L5) expression in the testis, we compared the testis between gad, hetero and wild type mice by histological, immunohistochemical analyses and RT-PCR. Histological analysis in 25-week-old gad mice showed shrinking of seminiferous tubules, decreasing total number of cells and enlargement of remaining cells in seminiferous tubules. By immunohistochemistry, a significant decrease (p < 0.05) in the number of proliferating cell nuclear antigen (PCNA) positive cells was observed. Expression of other UCH isozyme mRNAs was not apparently affected by Uch-L1 deficiency in 25-week-old gad mice. This study is the first report on the testis of gad mutant mouse.  相似文献   

13.
In this study, we examined the effects of dietary lactosucrose (LS, a non-digestible oligosaccharide) on the IgE response in mice immunized with ovalbumin (OVA)/alum. In addition to IgG1 and IgG2a responses, the anti-OVA IgE response in mice fed LS diets was dose-dependently suppressed, as compared with the control mice, while the serum total IgG levels were comparable. Moreover, dietary LS feeding inhibited antigen-specific IgE and IgG1 productions even after a second immunization. Regarding with cytokine production, when stimulated in vitro with OVA, splenocytes obtained from LS-fed mice produced a similar level of IFN-gamma, and lower levels of IL-4 and IL-5, as compared with the control mice. But IL-10 production by OVA-stimulated splenocytes was augmented in LS-fed mice, suggesting that IL-10 producing cells are responsible for the immunoregulatory effect of LS. Our findings indicate the further possibility that dietary LS supplementation can be used to prevent IgE-mediated allergic diseases.  相似文献   

14.
Elevated levels of chemokines, such as Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES), Monocyte Chemotactic Protein-1 (MCP-1), Macrophage Inflammatory Protein-1alpha (MIP-1alpha), and Macrophage Inflammatory Protein-1beta (MIP-1beta) have been found in rheumatoid arthritis (RA) and juvenile arthritis (JA), and they may be associated with the pathogenesis of these diseases. These chemokines are implicated in the migration of specific leukocytes into the joints. Omega-3 (omega3) fatty acid rich-fish oil (FO) and vitamin E may delay the progress of certain autoimmune diseases. The present study was designed to understand the effects of dietary lipids (omega-6 and omega-3 fatty acids) and vitamin E on the production of chemokines in autoimmune-prone MRL/lpr (a mouse model for RA) and congenic control MRL/++ mice. The MRL mice were fed for 4.5 months omega-6 and omega-3 diets that varied in lipid sources (corn oil; CO and fish oil; FO) and vitamin E levels (269 I.U./kg and 694 I.U./kg diet). Spleen cells were isolated and cultured aseptically in the presence of PHA for 48 h at 37 degrees C and the levels of chemokines (RANTES, JE/MCP-1 and MIP-1alpha) were determined in the cell-free supernatants. The levels of RANTES and JE/MCP-1 were significantly higher in MRL/lpr mice compared to MRL/++ mice. The FO had differential effect on RANTES and MCP-1 production by spleen cells. The production of RANTES and JE/MCP-1 by spleen cells in mice fed the FO diets was significantly lower than in mice fed the CO diets (p < 0.0001). The levels of vitamin E did not affect the production of RANTES and JE/MCP-1. The levels of vitamin E had a significant effect on MIP-1alpha as the spleen cells of mice fed diets containing 694 IU/kg diet of vitamin E produced significantly higher levels of MIP-1alpha compared to the group of mice fed the diets containing 269 IU of vitamin E (p < 0.0001). The data obtained from this study in MRL/lpr and MRL/++ mice suggest that FO diets containing omega-3 fatty acids are beneficial in decreasing the levels of certain pro-inflammatory chemokines (RANTES and MCP-1) thereby delaying the onset of and severity of autoimmune symptoms in MRL/lpr mouse model.  相似文献   

15.
To investigate the influence and possible interactions of dietary vitamin E and C supplementation on vitamin content of both vitamins and oxidative stability of different pork tissues 40 Large White barrows from 25 kg to 106 kg were allocated to four different cereal based diets: Basal diet (B), dl-alpha-tocopherylacetate + 200 mg/kg (E), crystalline ascorbic acid + 300 mg/kg (C) or both vitamins (EC). At slaughtering samples of liver, spleen, heart, kidney, backfat outer layer, ham and M. tongissimus dorsi were obtained. Growth performance of the pigs and carcass characteristics were not influenced by feeding treatments. Dietary vitamin E supplementation had a significant effect on the vitamin E and alpha-tocopherol concentration in all investigated tissues. Backfat outer layer, liver, spleen, kidney and heart had higher vitamin E concentrations than ham and M. longissimus dorsi. Dietary vitamin C supplementation tended towards enhanced vitamin E levels except for ham samples. Therefore, some synergistic actions without dietary vitamin E supplementation between the two vitamins could be shown. The vitamin C concentration and TBARS were increased or at least equal in all tissues due to vitamin C supplementation. Dietary alpha-tocopherol supplementation resulted in lower TBARS in backfat outer layer (malondialdehyde 0.35 mg/kg in B vs. 0.28 mg/kg in E), but increased in heart and ham. When both vitamins were supplemented (EC) TBARS were lower in M. longissimus dorsi and backfat outer layer, equal in heart and higher in liver and ham compared to a single vitamin C supplementation. Rancimat induction time of backfat outer layer was 0.3 h higher in C compared to B and 0.17 h higher in EC than in E. Correlations between levels of both vitamins were positive for kidney (r = 0.169), M. longissimus dorsi (r = 0.499) and ham (r = 0.361) and negative for heart (r = -0.350). In liver and spleen no interaction could be found. In backfat outer layer vitamin E was positively correlated with rancimat induction time (r = 0.550) and negatively with TBARS (r = -0.202), but provided no evidence that dietary vitamin E supply led to better oxidative stability.  相似文献   

16.
To investigate the influence and possible interactions of dietary vitamin E and C supplementation on vitamin content of both vitamins and oxidative stability of different pork tissues 40 Large White barrows from 25?kg to 106?kg were allocated to four different cereal based diets: Basal diet (B), dl-α-tocopherylacetate?+?200?mg/kg (E), crystalline ascorbic acid?+?300?mg/kg (C) or both vitamins (EC). At slaughtering samples of liver, spleen, heart, kidney, backfat outer layer, ham and M. longissimus dorsi were obtained. Growth performance of the pigs and carcass characteristics were not influenced by feeding treatments. Dietary vitamin E supplementation had a significant effect on the vitamin E and α-tocopherol concentration in all investigated tissues. Backfat outer layer, liver, spleen, kidney and heart had higher vitamin E concentrations than ham and M. longissimus dorsi. Dietary vitamin C supplementation tended towards enhanced vitamin E levels except for ham samples. Therefore, some synergistic actions without dietary vitamin E supplementation between the two vitamins could be shown. The vitamin C concentration and TBARS were increased or at least equal in all tissues due to vitamin C supplementation. Dietary α-tocopherol supplementation resulted in lower TBARS in backfat outer layer (malondialdehyde 0.35?mg/kg in B vs. 0.28?mg/kg in E), but increased in heart and ham. When both vitamins were supplemented (EC) TBARS were lower in M. longissimus dorsi and backfat outer layer, equal in heart and higher in liver and ham compared to a single vitamin C supplementation. Rancimat induction time of backfat outer layer was 0.3?h higher in C compared to B and 0.17?h higher in EC than in E. Correlations between levels of both vitamins were positive for kidney (r?=?0.169), M. longissimus dorsi (r?=?0.499) and ham (r?=?0.361) and negative for heart (r?=???0.350). In liver and spleen no interaction could be found. In backfat outer layer vitamin E was positively correlated with rancimat induction time (r?=?0.550) and negatively with TBARS (r?=???0.202), but provided no evidence that dietary vitamin E supply led to better oxidative stability.  相似文献   

17.
18.
The influence of dietary vitamin E and Santoquin on lipid peroxidation and liver regeneration in partially-hepatectomized rats was studied. Rats were fed either a basal 10% tocopherol-stripped corn oil diet, the basal diet plus 40 mg dl-alpha-tocopheryl acetate/kg, or the basal diet plus 2 g Santoquin (6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline)/kg. After 6 weeks, rats fed the antioxidant-deficient diet produced more of the lipid peroxidation product, pentane, than did the rats fed antioxidants. Partial hepatectomy was performed after six and one-half weeks or ten weeks of feeding the diets. At 3 and 6 days after surgery, pentane production was significantly elevated over pre-surgery levels in rats fed the antioxidant-deficient or vitamin E-supplemented diets, but not in rats fed the Santoquin-supplemented diet. Six days after surgery, there were fewer thiobarbituric acid reactants in regenerating liver of Santoquin-fed rats than of vitamin-E fed rats or antioxidant-deficient rats. There was no increase in the 6-day level of thiobarbituric acid reactants over the 3-day level in livers of rats fed Santoquin, while there was an increase in livers of the antioxidant-deficient and vitamin E-supplemented rats. Liver sulfhydryl levels were higher at 3 and 6 days post surgery in the Santoquin-fed rats than in the antioxidant-deficient or vitamin E-supplemented rats. Plasma gamma-glutamyl-transpeptidase activity was not different among the groups of rats. Between the third and sixth day following surgery, liver regeneration was significantly stimulated in Santoquin-fed, but not vitamin E-fed rats. After 11 days, a stimulatory, but not statistically significant, effect of vitamin E was found. Although DNA content of liver was higher at 6 days than at 3 days post surgery, it was not different among the dietary groups, indicating that cell proliferation rather than hypertrophy had occurred. Partial hepatectomy could have altered the ability of the liver to metabolize pentane, thus explaining part of the increased production of pentane. However, the results obtained support the interpretation that elevated levels of dietary antioxidants can be beneficial in terms of reduced lipid peroxidation and increased rates of liver regeneration following liver surgery.  相似文献   

19.
Influence of dietary vitamin E on prostaglandin biosynthesis in rat blood   总被引:2,自引:0,他引:2  
A vitamin E (-tocopherol) deficient diet stimulated prostaglandin biosynthesis in coagulating rat blood. Prostaglandins were extracted from serum, purified and bioassayed. The identity of prostaglandin E2 was confirmed by gas chromatography-mass spectrometry. Withholding vitamin E from the diet caused a marked increase in PGE2 and a lesser increase in PGF2 production in serum. In rats maintained on diets containing different concentrations of vitamin E, serum concentrations of PGE2 and PGF2 were inversely related to serum concentrations of -tocopherol. These data suggest that in vivo -tocopherol inhibits the endogenous conversion of arachidonic acid into PGE2 and PGF2. The possibility that -tocopherol may inhibit the formation of endoperoxide intermediates of PGE2 and PGF2 biosynthesis and subsequent induction of platelet aggregation is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号