首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Single electroconvulsive shock (ECS) induced no change in [3H]quinuclidinyl benzilate ([3H]QNB) binding to muscarinic cholinergic receptors in rat cortex and hippocampus. ECS administered once daily for 7 days induced a significant reduction in [3H]QNB binding in both brain areas. Concurrent ECS reversed the significant increase in cortical [3H]QNB binding induced by chronic atropine administration. These findings may have relevance to the antidepressant or amnestic effects of electroconvulsive therapy.  相似文献   

2.
Evidence for Multiple Muscarinic Receptor Subtypes in Human Brain   总被引:1,自引:1,他引:0  
Pirenzepine, a compound with selective antimuscarinic activity, was used to distinguish muscarinic acetylcholine receptor subtypes in normal human brain. Hill coefficients and IC50 values derived from the inhibition of specific [3H]L-quinuclidinyl benzilate receptor binding suggest the presence of two muscarinic binding sites, differing both in affinity for pirenzepine and in tissue distribution.  相似文献   

3.
Nicotinic and muscarinic cholinergic receptors were studied in autopsied brains from four histologically normal controls and five histopathologically verified cases of Alzheimer-type dementia (ATD), using ligand binding techniques. Nicotinic and muscarinic cholinergic receptors were assessed by (-)-[3H]nicotine and [3H]quinuclidinyl benzilate [( 3H]QNB), respectively. Compared with the controls, (-)-[3H]nicotine binding sites in the ATD brain regions examined were significantly reduced in the putamen and the nucleus basalis of Meynert (NbM). [3H]QNB binding was significantly reduced in the hippocampus and NbM. These findings suggest that there are significant changes of nicotinic and muscarinic cholinergic receptors in selected regions of ATD brains.  相似文献   

4.
Abstract: The feasibility of using a permeabilized preparation of human SH-SY-5Y neuroblastoma cells for studies of muscarinic acetylcholine receptor (mAChR) sequestration has been evaluated. Exposure of cells permeabilized with digitonin, streptolysin-O, or the α-toxin from Staphylococcus aureus to oxotremorine-M (Oxo-M) for 30 min resulted in a 25–30% reduction in the number of cell surface mAChRs, as monitored by the loss of N[3H]methyl- scopolamine ([3H]NMS) binding sites. The corresponding value for intact cells was 40%. For cells permeabilized with 20 μM digitonin, the Oxo-M-mediated reduction in [3H]NMS binding was time (t1/2~ 5 min) and concentration (EC50~ 10 μM) dependent and was agonist specific (Oxo M > bethanechol = arecoline = pilocarpine). In contrast, no reduction in total mAChR number, as monitored by the binding of [3H]quinuclidinyl benzilate, occurred following Oxo-M treatment. The loss of [3H]NMS sites observed in the presence of Oxo-M was unaffected by omission of either ATP or Ca2+, both of which are required for stimulated phosphoinositide hydrolysis, but could be inhibited by the inclusion of guanosine 5′-O-(2-thiodiphosphate). mAChRs sequestered in response to Oxo-M addition were unmasked when the cells were permeabilized in the presence of higher concentrations of digitonin (80 μM). The results indicate (a) that permeabilized SH-SY-5Y cells support an agonist-induced sequestration of mAChRs, the magnitude of which is ~ 65–70% of that observed for intact cells, (b) that when internalized, mAChRs are located in a cellular compartment to which [3H]NMS has only a limited access despite the removal of the plasma membrane barrier, and (c) that the production of phosphoinositide-derived second messengers is not a prerequisite for mAChR sequestration.  相似文献   

5.
Abstract: The muscarinic sites in arachnoid and pial vessels were compared by analysis of the binding of quinuclidinyl benzilate (QNB) to membrane preparations. Saturation analysis indicated that the process was saturable, high affinity, and related to protein concentration in both structures. Although the affinities in the two structures [ K D= 0.039 (arachnoid) and 0.097 n M (pial vessels)] were similar, the arachnoid had ∼ 10-fold more binding sites ( B max= 2,100 fmol/mg of protein) than the pial vessels ( B max= 250 fmol/ mg of protein). This difference was found in both bovine and porcine fractions. Pharmacological analysis of [3H]-QNB displacement by muscarinic and nonmuscarinic ligands gave the typical pattern of muscarinic receptors in both structures. Inhibition of binding to pial vessels by the M, antagonist pirenzepine revealed only one low-affinity site ( K i= 7.8 × 10−7 M ), whereas, the arachnoid had a small proportion (21%) of high-affinity sites ( K i= 2.2 × 10−9 M ) associated with low-affinity sites ( K i= 5.50 × 10−7 M ). It is concluded that muscarinic-mediated effects that do not involve the M, subtype are induced in bovine pial vessels by a relatively low concentration of binding sites. The high content of muscarinic binding sites and their diversity in the arachnoid suggest a functional role for muscarinic cholinergic receptors in this structure.  相似文献   

6.
Abstract: cis -Methyldioxolane (CD) is a muscarinic receptor agonist. [3H] CD has been used to label a subpopulation of muscarinic receptors described as exhibiting high agonist affinity. Pharmacological evidence suggests that the population of receptors labeled by [3H] CD consists of m2 and/or m4 subtypes; however, no studies have directly addressed the subtype selectivity of [3H] CD. The present study characterizes binding of this ligand to individual human receptor subtypes expressed in transfected Chinese hamster ovary cells. Results indicate that [3H] CD binds with high affinity only to Hm2 receptors but not to all Hm2 receptors. Twenty-eight percent of Hm2 receptors bound [3H] CD with a K D of 3.5 ± 0.5 nM. Binding was eliminated in the presence of guanosine 5'- O -(3-thiotriphosphate), indicating that the Hm2 receptors labeled by [3H] CD are those that are associated with GDP-bound G protein. Binding of [3H] CD by only a subpopulation of Hm2 receptors is in agreement with data generated from studies of [3H] CD binding in mammalian brain. Because muscarinic receptors have been implicated to play a role in the pathogenesis of both Alzheimer's and Parkinson's disease, as well as the neurotoxicity of organophosphorus compounds, knowledge of the binding specificity of the muscarinic agonist [3H] CD should aid research in these areas.  相似文献   

7.
Abstract: Measurements were made of the effects of muscarinic agents on endogenous levels of cyclic AMP and cyclic GMP, and the turnover of radiolabeled inositol phosphates in the abdominal nervous system of larval Manduca sexta . Cyclic AMP levels were increased by treatment with 3-isobutyl-1-methylxanthine or tetrodotoxin, but the muscarinic agonist oxotremorine-M and the muscarinic antagonist scopolamine had no consistent effects. In contrast, cyclic GMP levels were significantly increased by oxotremorine-M and by oxotremorine-M in the presence of 3-isobutyl-1-methylxanthine and tetrodotoxin but not in the presence of scopolamine. Using lithium to inhibit the recycling of inositol phospholipid metabolites in isolated nerve cords, we detected a small but consistent increase in inositol phosphate production by oxotremorine-M. The primary inositol metabolite generated during a 5-min exposure to oxotremorine-M co-eluted from ion-exchange columns with inositol-1-monophosphate, although other more polar metabolites were also detected. This agonist-evoked increase in inositol phosphate production was unaffected by tetrodotoxin but inhibited by scopolamine, suggesting that it is directly mediated by muscarinic receptors. Further evidence for coupling between muscarinic receptors and inositol metabolism was obtained using a cell-free preparation of nerve cord membranes labeled with [3H]inositol. Incubation with oxotremorine-M evoked a significant increase in labeled inositol bisphosphate, consistent with muscarinic receptors coupling to phosphatidylinositol metabolism. The accumulation of inositol bisphosphate in cell-free preparations suggests that the normal breakdown to inositol monophosphate requires cytosolic components. Together, these results indicate that muscarinic acetylcholine receptors in Manduca couple predominantly to the inositol phospholipid signaling system, although some receptors may modulate cyclic GMP.  相似文献   

8.
The differential effects of muscarinic agents on inositol phospholipid hydrolysis and the role in this process of putative muscarinic receptor subtypes (M1 and M2) were investigated in three regions of guinea pig brain. Addition of the agonist oxotremorine-M to slices of neostriatum, cerebral cortex, or hippocampus incubated in the presence of myo-[2-3H]inositol and Li+ resulted in a large accumulation of labeled inositol phosphates (733, 376, and 330% of control, respectively). In each tissue, the principal product formed was myo-inositol 1-phosphate (59-86%), with smaller amounts of glycerophosphoinositol and inositol bisphosphate. Only trace amounts of inositol trisphosphate could be detected. Regional differences were observed in the capacity of certain partial agonists to evoke inositol lipid hydrolysis, the most notable being that of bethanechol, which was four times more effective in the neostriatum than in either the cerebral cortex or hippocampus. In addition, the full agonists, oxotremorine-M and carbamoylcholine, were more potent stimulators of inositol phosphate release in the neostriatum than in the cerebral cortex. The putative M1 selective agonist 4-m-chlorophenylcarbamoyloxy-2-butynyl trimethyl ammonium chloride had little stimulatory effect in any brain region, whereas the putative M1 selective antagonist pirenzepine blocked the enhanced release of inositol phosphates with high affinity in the cerebral cortex and hippocampus (Ki = 12.1 and 13.9 nM; "M1") but with a lower affinity in the neostriatum (Ki = 160 nM; "M2"). In contrast to its differential effects on stimulated inositol lipid hydrolysis, no regional differences were observed in the capacity of pirenzepine to displace [3H]quinuclidinyl benzilate, a muscarinic antagonist, bound to membrane fractions. Atropine, an antagonist that does not discriminate between receptor subtypes, inhibited the enhanced release of inositol phosphates with similar affinities in the three regions (Ki = 0.40-0.60 nM). The results indicate that by measurement of inositol lipid hydrolysis, regional differences in muscarinic receptor coupling characteristics become evident. These differences, which are not readily detected by radioligand binding techniques, might be accounted for by either the presence of functionally distinct receptor subtypes, or alternatively, by regional variations in the efficiency of muscarinic receptor coupling to inositol lipid hydrolysis.  相似文献   

9.
Abstract: Unilateral aspiration lesions of the rostral supracallosal stria/cingulum bundle and fimbria-fornix were performed on adult female rats. Ten and 24 days post lesioning, an elevation (17%; p<0.01) of total muscarinic receptors was observed in lesioned versus control hippocampi. By using antisera selective for each of the five molecularly defined subtypes (m1-m5) of muscarinic receptors, significant changes were observed in the levels of expression for at least four receptor proteins. Three receptor subtypes increased in density: m1 by 14% (from 943 to 1,078 fmol/mg); m3 by 77% (from 150 to 268 fmol/ mg); and m4 by 29% (from 220 to 285 fmol/mg). In contrast, a 22% decrease in the density of m2 receptors was found (from 220 to 173 fmol/mg). Detectable levels of m5 receptors were low in the hippocampus (∼1% of total receptors), and reliable measurements were not obtained. The directions of these changes are likely to be related to the pre- or postsynaptic localization of these receptor subtypes.  相似文献   

10.
Altered Ontogenesis of Muscarinic Receptors in Agranular Cerebellar Cortex   总被引:3,自引:3,他引:0  
Abstract: The developmental pattern, the agonist binding properties and the cellular origin(s) of muscarinic binding sites were investigated in agranular cerebellum of x-irradiated rats, of Gunn rats with hereditary hyperbilirubinemia, and of staggerer mutant mice. The density of muscarinic binding sites was found to be higher than normal in all of these cerebellar types, indicating that granular neurons do not greatly contribute to binding of acetylcholine in the rodent cerebellum. The total number of muscarinic binding sites as measured by binding of [3H]4NMPB remains unchanged in the agranular cerebellum of x-irradiated rats. However, the number of muscarinic sites is reduced by about 30% in the agranular cerebellum of homozygous Gunn rats (jj), in which fibrous astrocytes and Purkinje cells are also damaged. In the cerebellum of staggerer mice (sg/sg), where a cascade of events leads to massive damage to mossy fibers and Golgi cells in addition to granular neurons and Purkinje cells, the content of muscarinic receptors is reduced by 50%. Thus, the number of muscarinic binding sites in the rodent cerebellum seems to depend on the integrity of the additional cell types and cellular elements, damaged in these agranular models. The ontogenetic variations in the affinity of cerebellar muscarinic sites for binding of carbamylcholine in normal and Gunn rat cerebellum were compared with those observed in x-irradiated and staggerer cerebellum, where elimination of granular neurons induces the formation of ‘heterologous’ synapses. Muscarinic binding affinity increases 10-fold during postnatal development in the cerebellum of normal and Gunn rats. In the immature x-irradiated cerebellum, the affinity of muscarinic binding sites was found to be nearly as high as that detected in the adult normal cerebellum. In contrast, cerebella of 5-month-old staggerer mice display 5-fold lower affinity than their normal counterpart values, as low as that determined in normal immature cerebellum. The characteristic ontogenetic pattern of muscarink binding is therefore indicated to be related to the formation of correct circuitry, but not to the presence of granular neurons, in the developing rat cerebellum.  相似文献   

11.
Twenty-two frontal cortices from normal human foetal brains of gestational ages ranging from 16 to 40 weeks and five postnatal brains ranging from 5 to 50 years were analysed for the ontogeny of muscarinic receptors using [3H]quinuclidinyl benzilate (QNB) as the ligand. QNB binding sites were shown to be stable up to 4 1/2 months of storage at -70 degrees C. QNB binding was characterized in frontal cortices of 28-week-old foetal brains as muscarinic receptors by the following criteria: (1) it was localised mainly in particulate fraction; (2) binding was saturable at a concentration of 1.5 nM; (3) the cholinergic antagonists atropine and scopolamine competed for the binding, with IC50 values of 1 and 0.8 nM, respectively. The agonists oxotremorine, carbachol, and pilocarpine gave IC50 values of 1, 15 and 18 microM, respectively. Nicotinic receptor ligands and noncholinergic drugs could not compete for the binding. Bimolecular association and dissociation rate constants for the reversible binding are 6.23 X 10(8) M-1 X min-1 and 2.0 X 10(-2) X min-1, respectively. The equilibrium dissociation constant is 33 pM. The KD obtained by saturation binding data is 103 pM. Ontogeny of muscarinic receptors showed three distinct phases: In phase I, they appear between 16 and 18 weeks [average concentration 109 fmol/mg protein of total particulate fraction (TPF)] and slowly increase up to 20 weeks (average concentration 147 fmol/mg protein TPF). Phase II is a lag period between 20 and 24 weeks at which time receptor concentration does not change perceptibly (average concentration (67 fmol/mg protein TPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The specific-binding properties of l-[3H]quinuclidinyl benzilate, a muscarinic acetylcholine-receptor antagonist, were investigated in synaptic and other membrane preparations of the guinea pig cochlear nucleus and auditory nerve. Binding parameters for all experiments were consistent with a single binding site with a Hill coefficient of 1.0. The binding of the ligand was specific and of high affinity, with values of KD in the range of 30-80 pM. Bmax was 0.352 +/- 0.023 pmol/mg protein for the dorsal cochlear nucleus and 0.215 +/- 0.011 pmol/mg protein for the ventral cochlear nucleus. The dorsal cochlear nucleus/ventral cochlear nucleus ratio for density of muscarinic receptors (1.6/1.0) was maintained across two different buffer systems, which varied with respect to the inclusion of proteolysis inhibitors. The results for auditory nerve indicated a level of binding much below that of the cochlear nucleus, with Bmax = 0.052 +/- 0.011 pmol/mg protein. The results of specific-binding experiments for l-[3H]quinuclidinyl benzilate support a role for acetylcholine as a neurotransmitter in the cochlear nucleus. The greater density of muscarinic receptors in the dorsal cochlear nucleus may indicate greater cholinergic activity in the dorsal relative to the ventral cochlear nucleus.  相似文献   

13.
The muscarinic receptor for acetylcholine shows a diversity in ligand binding properties and effector mechanisms which have suggested the existence of two subtypes (M1 and M2), to which the selective antagonist pirenzepine binds with markedly different affinities. The receptor from rat brain, covalently labelled with the alkylating antagonist tritiated propylbenzilylcholine mustard, displays a structural microheterogeneity on electrophoresis, covering the region of apparent molecular weight 66,000-76,000, with dominant components at 68,000 and 73,000. Selective inhibition by pirenzepine of labelling of the M1 receptor with tritiated mustard has been analysed on fluorographs of sodium dodecyl sulphate-polyacrylamide gels and shown to cause a uniform reduction in radioactive labelling of the broad receptor peak, rather than selectively inhibiting either the high- or low-molecular-weight regions of the band. It is further shown that although this receptor microheterogeneity is found for each of four brain regions studied, it is not found for the heart receptor, which gives a discrete labelled band of apparent molecular weight 72,000. It is therefore suggested that the structural microheterogeneity is the result of tissue-specific, posttranslational modification of the molecule, such as glycosylation, and is not directly related to the functional diversity of the receptor.  相似文献   

14.
Abstract: Muscarinic receptors, labeled with [3H]quinuclidinyl benzylate (3H]QNB), and acetylcholinesterase activity were studied in five areas of the developing chick brain: (1) hyperstriatum and neostriatum , (2) paleostriatum, (3) optic lobes, (4) mesodiencephalon and (5) cerebellum. The protein content of these areas, expressed as mg/g tissue and total protein, was determined between day -10 and adulthood. Differences in both determinations were observed among the areas. The binding of [3H]QNB was expressed as density (fmol/mg protein) and total number of receptors (fmol/total protein) in the area. Considerable variations were observed among the areas. The cerebellum showed the lowest receptor density and a large decrease in density and total number of receptors in the adult, which may reflect a change in neuronal population. Acetylcholinesterase, in certain areas, accompanied the changes in receptor concentration, but the timing and rate of increase had special features in each case. The most striking one was the cerebellum, in which the enzyme increased steadily postnatally, while the muscarinic receptors dropped to very low values.  相似文献   

15.
Chronic administration of lithium led to a decreased number of benzodiazepine receptors (ca. 20%) in frontal cortex of rat brain, whereas no change was observed in the binding characteristics in the remaining part of the cortex and in the hippocampus and the cerebellum. Long-term lithium treatment did not change the binding of [3H]lysergic acid diethylamide and [3H]quinuclidinyl benzilate to membranes of various brain regions in the rat. We concluded that the effect of lithium on the benzodiazepine receptor is brain region specific and cannot be explained as a consequence of a reduced gamma-aminobutyric acid-ergic stimulation of benzodiazepine receptor, as the change in receptor binding was due to a change in the number of receptors rather than in the affinity constant.  相似文献   

16.
毒蕈碱样乙酰胆碱受体(MAChRs)是G蛋白偶联受体(GPCRs)超家族中的一员,具有该家族特性的结构和信号转导方式。GTP结合蛋白(Gproteins)是一类具有GTP酶活性的蛋白质,由α、β、γ三个亚基构成。其中α亚基结合GDP或GTP,分别代表G蛋白的非活化和活化状态。M受体与Gi/Go或Gq/11间的作用机制仍在探讨中,但基本过程与Gs介导的信号转导模式相似。激动剂持续作用后,G蛋白偶联受体激酶和阻滞蛋白导受体脱敏和内吞。  相似文献   

17.
Quinuclidinyl Benzilate Binding in House Fly Heads and Rat Brain   总被引:1,自引:3,他引:1  
Abstract: House fly heads contain a binding site for 3-quinuclidinyl benzilate (QNB) that is quite similar in pharmacology to the muscarinic acetylcholine receptor of vertebrate tissues. The house fly site binds [3H]QNB reversibly with a K d of 260 PM and Bmax of 1 pmol/g of heads from direct binding measurements. The Kd calculated from the ratio of the dissociation rate constant (2 × 10−4 sec−1) to the association rate constant (2.5 × 106 M−1 Sec−1) was 80 pM. The house fly site binds (-)quinuclidinyl benzilate preferentially, as do classic muscarinic receptors. The binding is also sensitive to other muscarinic antagonists and agonists. Nicotinic and other drugs are no more effective on the house fly site than they are on the rat brain muscarinic receptor itself. These binding studies suggest that the house fly QNB binding site is a muscarinic receptor.  相似文献   

18.
The tottering mouse (tg/tg) is a single-locus mutant, phenotypically characterized by the development of epilepsy associated with distinct electroencephalographic abnormalities. Because of reported alterations in muscarinic receptor (mAChR) number in various seizure states, mAChR density was examined in discrete brain regions of tottering (tg/tg) and coisogenic wild-type (+/+) mice. Saturation binding experiments revealed a widespread decrease in membrane mAChR density in the CNS of adult tottering (tg/tg) mice as compared with age-matched control wild-type (+/+) mice. The decrease was most pronounced in the hippocampus, where tg/tg mice exhibited a 40-60% reduction in mAChR density with no change in the affinity of the receptor for antagonists or agonists. At postnatal day 10, before the reported onset of electroencephalographic abnormalities, 114 and 65% increases in mAChR density were observed in the tg/tg hippocampus and cortex, respectively. Following the development of seizure activity at postnatal day 22, mAChR density in the tg/tg hippocampus was reduced by 29%. No change in brain mAChR density was seen in adult heterozygotes (+/tg), which do not develop electroencephalographic or seizure abnormalities. These results indicate that the development of reduced mAChR number in the CNS of the tg/tg mouse is secondary to abnormal neuronal activity, providing further support for the hypothesis that membrane depolarization can cause a decrease in neuronal mAChR density.  相似文献   

19.
The lysophospholipid mediators, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), are responsible for cell signaling in diverse pathways including survival, proliferation, motility, and differentiation. Most of this signaling occurs through an eight-member family of G-protein coupled receptors once known as the endothelial differentiation gene (EDG) family. More recently, the EDG receptors have been divided into two subfamilies: the lysophosphatidic acid subfamily, which includes LPA1, (EDG-2/VZG-1), LPA2 (EDG-4), and LPA3 (EDG-7), and the sphingosine-1-phosphate receptor subfamily, which includes S1P1 (EDG-1), S1P2 (EDG-5/H218/AGR16), S1P3 (EDG-3), S1P4 (EDG-6), and S1P5 (EDG-8/NRG-1). The ubiquitous expression of these receptors across species, coupled with their diverse cellular functions, has made lysophospholipid receptors an important focus of signal transduction research. Neuroscientists have recently begun to explore the role of lysophospholipid receptors in a number of cell types; this research has implicated these receptors in the survival, migration, and differentiation of cells in the mammalian nervous system.  相似文献   

20.
Abstract: Molecular subtypes of muscarinic receptors (m1–m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease. However, the status of these receptors in human brain and Alzheimer's disease is incompletely understood. The m1–m5 receptors in brains from control subjects and Alzheimer's disease patients were examined using a panel of specific antisera and radioligand binding. Quantitative immunoprecipitation demonstrated a predominance of the m1, m2, and m4 receptor subtypes in cortical and subcortical regions in control subjects. In Alzheimer's disease, normal levels of m1 receptors measured by radioligand binding contrasted with decreased m1 receptor immunoreactivity, suggesting that the m1 receptor is altered in Alzheimer's disease. The m2 immunoreactivity was decreased, consistent with the loss of m2 binding sites and the location of this receptor subtype on presynaptic cholinergic terminals. The m4 receptor was up-regulated significantly and may offer a target for new memory-enhancing drugs. Differential alterations of molecular subtypes of muscarinic receptors may contribute to the cholinergic component of Alzheimer's disease dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号