首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remodeling by its very nature implies synthesis and degradation of extracellular matrix components (such as elastin, collagen, and connexins). Most of the vascular matrix metalloproteinase (MMP) are latent because of the presence of constitutive nitric oxide (NO). However, during oxidative stress peroxinitrite (ONOO-) activates the latent MMPs and instigates vascular remodeling. Interestingly, in mesenteric artery, homocysteine (Hcy) decreases the NO bio-availability, and folic acid (FA, an Hcy-lowering agent) mitigates the Hcy-mediated mesentery artery dysfunction. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) and endothelial nitric oxide synthase (eNOS) increases NO production. The hypothesis was that the Hcy decreased NO bio-availability, in part, activating MMP, decreasing elastin, DDAH-2, eNOS and increased vasomotor response by increasing connexin. To test this hypothesis,the authors used 12-week-old C57BJ/L6 wild type (WT) and hyperhomocysteinemic (HHcy)-cystathione beta synthase heterozygote knockout (CBS+/-) mice. Blood pressure measurements were made by radio-telemetry. WT and MMP-9 knockout mice were administered with Hcy (0.67 mg/ml in drinking water). Superior mesenteric artery and mesenteric arcade were analyzed with light and confocal microscopy. The protein expressions were measured by western blot analysis. The mRNA levels for MMP-9 were measured by RT-PCR. The data showed decreased DDAH-2 and eNOS expressions in mesentery in CBS-/+ mice compared with WT mice. Immuno-fluorescence and western blot results suggest increased MMP-9 and connexin-40 expression in mesenteric arcades of CBS-/+ mice compared with WT mice. The wall thickness of third-order mesenteric artery was increased in CBS-/+ mice compared to WT mice. Hcy treatment increased blood pressure in WT mice. Interestingly, in MMP-9 KO, Hcy did not increase blood pressure. These results may suggest that HHcy causes mesenteric artery remodeling and narrowing by activating MMP-9 and decreasing DDAH-2 and eNOS expressions, compromising the blood flow, instigating hypertension, and acute abdomen pain.  相似文献   

2.
An elevated level of Homocysteine (Hcy) is a risk factor for vascular dementia and stroke. Cysthathionine β Synthase (CBS) gene is involved in the clearance of Hcy. Homozygous individuals for (CBS−/−) die early, but heterozygous for (CBS−/+) survive with high levels of Hcy. The γ-Amino Butyric Acid (GABA) presents in the central nervous system (CNS) and functions as an inhibitory neurotransmitter. Hcy competes with GABA at the GABAA receptor and affects the CNS function. We hypothesize that Hcy causes a decrease in blood flow to the brain due to increase in vascular resistance (VR) because of arterial remodeling in the carotid artery (CA). Blood pressure and blood flow in CA of wild type (WT), CBS−/+, CBS−/+ GABAA−/− double knockout, and GABAA−/− were measured. CA was stained with trichrome, and the brain permeability was measured. Matrix Metalloproteinases (MMP-2 and MMP-9), tissue inhibitor of metalloproteinase (TIMP-3, TIMP-4), elastin, and collagen-III expression were measured by real-time polymerase chain reaction (RT-PCR). Results showed an increase in VR in CBS−/+/GABAA−/−double knockout > CBS−/+/ > GABAA−/− compared to WT mice. Increased MMP-2, MMP-9, collagen-III and TIMP-3 mRNA levels were found in GABAA−/−, CBS−/+, CBS−/+/GABAA double knockout compared to WT. The levels of TIMP-4 and elastin were decreased, whereas the levels of MMP-2, MMP-9 and TIMP-3 increased, which indirectly reflected the arterial resistance. These results suggested that Hcy caused arterial remodeling in part, by increase in collagen/elastin ratio thereby increasing VR leading to the decrease in CA blood flow.  相似文献   

3.
To test the hypothesis that endothelial dysfunction in hyperhomocysteinemia was due to increased levels of nitrotyrosine and matrix metalloproteinase (MMP) activity in response to antagonism of peroxisome proliferator-activated receptor-alpha (PPAR-alpha), cystathionine beta-synthase (CBS) -/+ mice were bred, tail tissue was analyzed for genotype by PCR, and tail vein blood was analyzed for homocysteine (Hcy) by spectrofluorometry. To induce PPAR-alpha, mice were administered 8 microg/ml of ciprofibrate (CF) and grouped: 1) wild type (WT), 2) WT + CF, 3) CBS, 4) CBS + CF (n = 6 in each group). In these four groups of mice, plasma Hcy was 3.0 +/- 0.2, 2.5 +/- 1.2, 15.2 +/- 2.6 (P < 0.05 compared with WT), 11.0 +/- 2.9 micromol/l. Mouse urinary protein was 110 +/- 11, 86 +/- 6, 179 +/- 13, 127 +/- 9 microg.day(-1). kg(-1) by Bio-Rad dye binding assay. Aortic nitrotyrosine was 0.099 +/- 0.012, 0.024 +/- 0.004, 0.132 +/- 0.024 (P < 0.01 compared with WT), 0.05 +/- 0.01 (scan unit) by Western analysis. MMP-2 activity was 0.053 +/- 0.010, 0.024 +/- 0.002, 0.039 +/- 0.009, 0.017 +/- 0.006 (scan unit) by zymography. MMP-9 was specifically induced in CBS -/+ mice and inhibited by CF treatment. Systolic blood pressure (SPB) was 90 +/- 2, 88 +/- 16, 104 +/- 8 (P < 0.05 compared with WT), 96 +/- 3 mmHg. Aortic wall stress [(SPB. radius(2)/wall thickness)/2(radius + wall thickness)] was 10.2 +/- 1.9, 9.7 +/- 0.2, 16.6 +/- 0.8 (P < 0.05 compared with WT), 13.1 +/- 2.1 dyn/cm(2). The results suggest that Hcy increased aortic wall stress by increasing nitrotyrosine and MMP-9 activity.  相似文献   

4.
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling, the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear. TIMP-3 induced vascular cell apoptosis, therefore, we hypothesized that during vascular injury TIMP-3, MMP-9 and -12 (elastin-degrading MMP) were increased, whereas MMP-2 (constitutive MMP) and TIMP-4 (cardioprotective TIMP) decreased. Because of the potent anti-oxidant, vasorelaxing, anti-hypertensive agent, hydrogen sulfide (H2S) was used to mitigate the vascular remodeling due to the differential expression of MMP and TIMP. Carotid artery injury was created by inserting a PE-10 catheter and rotating several times before pulling out. The insertion hole was sealed. Mice were grouped: wild type (WT), wild-type damaged artery (WTD), WT + NaHS (sodium hydrogen sulfide, precursor of H2S) treatment (30 μmol/L in drinking water/6 weeks) and WTD + NaHS treatment. Carotid arteries were analyzed for oxidative stress and remodeling, by measuring super oxide dismutase-1 (SOD1), p47 (NADPH oxidase subunit), nitrotyrosine, MMPs and TIMPs by in situ immunolabeling and by Western blot analyses. The results suggested robust increase in p47, nitrotyrosine, MMP-9, MMP-12, TIMP-3 and decrease in SOD1 and MMP-2 levels in the injured arteries. The treatment with H2S ameliorated these effects. We concluded that p47, TIMP-3, MMP-9 and -12 were increased where as SOD-1, MMP-2 and TIMP-4 were decreased in the injured arteries. The treatment with H2S mitigated the vascular remodeling by normalizing the levels of redox stress, MMPs and TIMPs.  相似文献   

5.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   

6.
An elevated level of Homocysteine (Hcy) is a risk factor for vascular dementia and stroke. Cysthathionine β Synthase (CBS) gene is involved in the clearance of Hcy. Homozygous individuals for (CBS−/−) die early, but heterozygous for (CBS−/+) survive with high levels of Hcy. The γ-Amino Butyric Acid (GABA) presents in the central nervous system (CNS) and functions as an inhibitory neurotransmitter. Hcy competes with GABA at the GABAA receptor and affects the CNS function. We hypothesize that Hcy causes a decrease in blood flow to the brain due to increase in vascular resistance (VR) because of arterial remodeling in the carotid artery (CA). Blood pressure and blood flow in CA of wild type (WT), CBS−/+, CBS−/+ GABAA−/− double knockout, and GABAA−/− were measured. CA was stained with trichrome, and the brain permeability was measured. Matrix Metalloproteinases (MMP-2 and MMP-9), tissue inhibitor of metalloproteinase (TIMP-3, TIMP-4), elastin, and collagen-III expression were measured by real-time polymerase chain reaction (RT-PCR). Results showed an increase in VR in CBS−/+/GABAA−/−double knockout > CBS−/+/ > GABAA−/− compared to WT mice. Increased MMP-2, MMP-9, collagen-III and TIMP-3 mRNA levels were found in GABAA−/−, CBS−/+, CBS−/+/GABAA double knockout compared to WT. The levels of TIMP-4 and elastin were decreased, whereas the levels of MMP-2, MMP-9 and TIMP-3 increased, which indirectly reflected the arterial resistance. These results suggested that Hcy caused arterial remodeling in part, by increase in collagen/elastin ratio thereby increasing VR leading to the decrease in CA blood flow.  相似文献   

7.
Although right ventricular failure (RVF) is the hallmark of pulmonary arterial hypertension (PAH), the mechanism of RVF is unclear. Development of PAH-induced RVF is associated with an increased reactive oxygen species (ROS) production. Increases in oxidative stress lead to generation of nitro-tyrosine residues in tissue inhibitor of metalloproteinase (TIMPs) and liberate active matrix metalloproteinase (MMPs). To test the hypothesis that an imbalance in MMP-to-TIMP ratio leads to interstitial fibrosis and RVF and whether the treatment with folic acid (FA) alleviates ROS generation, maintains MMP/TIMP balance, and regresses interstitial fibrosis, we used a mouse model of pulmonary artery constriction (PAC). After surgery mice were given FA in their drinking water (0.03 g/l) for 4 wk. Production of ROS in the right ventricle (RV) was measured using oxidative fluorescent dye. The level of MMP-2, -9, and -13 and TIMP-4, autophagy marker (p62), mitophagy marker (LC3A/B), collagen interstitial fibrosis, and ROS in the RV wall was measured. RV function was measured by Millar catheter. Treatment with FA decreased the pressure to 35 mmHg from 50 mmHg in PAC mice. Similarly, RV volume in PAC mice was increased compared with the Sham group. A robust increase of ROS was observed in RV of PAC mice, which was decreased by treatment with FA. The protein level of MMP-2, -9, and -13 was increased in RV of PAC mice in comparison with that in the sham-operated mice, whereas supplementation with FA abolished this effect and mitigated MMPs levels. The protein level of TIMP-4 was decreased in RV of PAC mice compared with the Sham group. Treatment with FA helped PAC mice to improve the level of TIMP-4. To further support the claim of mitophagy occurrence during RVF, the levels of LC3A/B and p62 were measured by Western blot and immunohistochemistry. LC3A/B was increased in RV of PAC mice. Similarly, increased p62 protein level was observed in RV of PAC mice. Treatment with FA abolished this effect in PAC mice. These results suggest that FA treatment improves MMP/TIMP balance and ameliorates mitochondrial dysfunction that results in protection of RV failure during pulmonary hypertension.  相似文献   

8.
Elevated levels of plasma homocysteine (Hcy) called hyperhomocysteinemia (HHcy) have been implicated in inflammation and remodeling in intestinal vasculature, and HHcy is also known to aggravate the pathogenesis of inflammatory bowel disease (IBD). Interestingly, colon is the pivotal site that regulates Hcy levels in the plasma. We hypothesize that HHcy decreases intestinal motility through matrix metalloproteinase-9 (MMP-9)-induced intestinal remodeling leading to constipation. To verify this hypothesis, we used C57BL/6J or wild-type (WT), cystathionine β-synthase (CBS(+/-)), MMP-9(-/-), and MMP-9(-/-) + Hcy mice. Intestinal motility was assessed by barium meal studies and daily feces output. Plasma Hcy levels were measured by HPLC. Expression of ICAM-1, inducible nitric oxide synthase, MMP-9, and tissue inhibitors of MMPs was studied by Western blot and immunohistochemistry. Reactive oxygen species (ROS) including super oxide were measured by the Invitrogen molecular probe method. Tissue nitric oxide levels were assessed by a commercially available kit. Plasma Hcy levels in the treated MMP-9 group mice were comparable to CBS(+/-) mice. Barium meal studies suggest that intestinal motility is significantly decreased in CBS(+/-) mice compared with other groups. Fecal output-to-body weight ratio was significantly reduced in CBS(+/-) mice compared with other groups. There was significant upregulation of MMP-9, iNOS, and ICAM-1 expression in the colon from CBS(+/-) mice compared with WT mice. Levels of ROS, superoxide, and inducible nitric oxide were elevated in the CBS(+/-) mice compared with other groups. Results suggest that HHcy decreases intestinal motility due to MMP-9-induced intestinal remodeling leading to constipation.  相似文献   

9.
Arterial remodeling occurs in response to mechanical and neurohumoral stimuli. We hypothesized that veins, which are not exposed to higher pressures in hypertension, would demonstrate less active remodeling than arteries. We assessed remodeling with two standard measures of arterial remodeling: vessel morphometry and the expression/function of matrix metalloproteinases (MMPs). Thoracic aorta and vena cava from sham normotensive and DOCA-salt hypertensive rats (110 +/- 4 and 188 +/- 8 mmHg systolic blood pressure, respectively) were used. Wall thickness was increased in DOCA-salt vs. sham aorta (301 +/- 23 vs. 218 +/- 14 mum, P < 0.05), as was medial area, but neither measure was altered in the vena cava. The aorta and vena cava expressed the gelatinases MMP-2, MMP-9, transmembrane proteinase MT1-MMP, and tissue inhibitor of metalloproteinase-2 (TIMP-2). Immunohistochemically, MMP-2 localized to smooth muscle in the aorta and densely in endothelium/smooth muscle of the vena cava. Western and zymographic analyses verified that MMP-2 was active in all vessels and less active in the vena cava than aorta. In hypertension, MMP-2 expression and activity in the aorta were increased (59.1 +/- 3.7 and 74.5 +/- 6.1 units in sham and DOCA, respectively, P < 0.05); similar elevations were not observed in the vena cava. MMP-9 was weakly expressed in all vessels. MT1-MMP was expressed by the aorta and vena cava and elevated in the vena cava from DOCA-salt rats. TIMP-2 expression was significantly increased in the aorta of DOCA rats compared with sham but was barely detectable in the vena cava of sham or DOCA-salt hypertensive rats. These findings suggest that large veins may not undergo vascular remodeling in DOCA-salt hypertension.  相似文献   

10.
Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory.  相似文献   

11.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

12.
OBJECTIVES: To define the link between the deletion of gene encoding for metalloproteinase 9 and resistance artery reactivity, we studied in vitro smooth muscle and endothelial cell function in response to pressure, shear stress, and pharmacological agents. BACKGROUND: Matrix metalloproteinases play a crucial role in the regulation of extracellular matrix turnover and structural artery wall remodeling. METHODS: Resistance arteries were isolated from mice lacking gene encoding for MMP-9 (KO) and their control (WT). Hemodynamic, pharmacology approaches, and Western blot analysis were used in this study. RESULTS: The measurement of blood pressure in vivo was similar in KO and WT mice. Pressure-induced myogenic tone, contractions to angiotensin-II and phenylephrine were similar in both groups. The inhibition of MMP2/9 ((2R)-2-[(4-biphenylylsulfonyl) amino]-3-phenylpropionic acid) significantly decreased myogenic tone in WT and had no effect in KO mice. Relaxation endothelium-dependent (flow-induced- dilation 41.3+/-0.6 vs. 21+/-1.6 at 10 microl/min in KO and WT mice, respectively, P<0.05) and eNOS expression were increased in KO compared to WT mice. The inhibition of eNOS with L-NAME significantly decreased endothelium response to shear stress, which was more pronounced in KO mice resistance arteries (-26.83+/-2.5 vs. -15.84+/-2.3 at 10 microl/min in KO and WT, respectively, P<0.05). However, the relaxation to exogenous nitric oxide-donor was similar in both groups. CONCLUSION: Our study provides evidence of a selective effect of MMP-9 on endothelium function. Thus, MMP-9 gene deletion specifically increased resistance artery dilation endothelium-dependent and eNOS expression. Based on our results, MMP-9 could be a potential therapeutic target in cardiovascular disease associated with resistance arteries dysfunction.  相似文献   

13.
The aim of the present study was to investigate the importance of tumor necrosis factor (TNF)-alpha receptor-1 (TNFR1)-mediated pathways in a murine model of myocardial infarction and remodeling. One hundred and ninety-four wild-type (WT) and TNFR1 gene-deleted (TNFR1KO) mice underwent left coronary artery ligation to induce myocardial infarction. On days 1, 3, 7, and 42, mice underwent transesophageal echocardiography. Hearts were weighed, and the left ventricle (LV) was assayed for matrix metalloproteinase (MMP)-2 and -9 activity and for tissue inhibitor of MMP (TIMP)-1 and -2 expression. Deletion of the TNFR1 gene substantially improved survival because no deaths were observed in TNFR1KO mice versus 56.4% and 18.2% in WT males and females, respectively (P < 0.002). At 42 days, LV remodeling, assessed by LV function (fractional area change of 31.9 +/- 7.9%, 32.2 +/- 7.7%, and 21.6 +/- 7.1% in TNFR1KO males, TNFR1KO females, and WT females, respectively, P < 0.04), and hypertrophy (heart weight-to-body weight ratios of 5.435 +/- 0.986, 5.485 +/- 0.677, and 6.726 +/- 0.704 mg/g, P < 0.04) were ameliorated in TNFR1KO mice. MMP-9 activity was highest at 3 days postinfarction and was highest in WT males (1.9 +/- 0.4 4, 3.6 +/- 0.24, 1.15 +/- 0.28, and 1.3 +/- 1.2 ng/100 microg protein, respectively, in TNFR1KO males, WT males, TNFR1KO females, and WT females, respectively, P < 0.002), whereas at 3 days TIMP-1 mRNA fold upregulation compared with type- and sex-matched controls was lowest in WT males (138.32 +/- 13.05, 46.74 +/- 5.43, 186.09 +/- 28.07, and 101.76 +/- 22.48, respectively, P < 0.002). MMP-2 and TIMP-2 increased similarly in all infarcted groups. These findings suggest that the benefits of TNFR1 ablation might be attributable at least in part to the attenuation of cytokine-mediated imbalances in MMP-TIMP activity.  相似文献   

14.
Changes in dietary sodium intake are associated with changes in vascular volume and reactivity that may be mediated, in part, by alterations in endothelial nitric oxide synthase (eNOS) activity. Caveolin-1 (Cav-1), a transmembrane anchoring protein in the plasma membrane caveolae, binds eNOS and limits its translocation and activation. To test the hypothesis that endothelial Cav-1 participates in the dietary sodium-mediated effects on vascular function, we assessed vascular responses and nitric oxide (NO)-mediated mechanisms of vascular relaxation in Cav-1 knockout mice (Cav-1-/-) and wild-type control mice (WT; Cav-1+/+) placed on a high-salt (HS; 4% NaCl) or low-salt (LS; 0.08% NaCl) diet for 16 days. After the systolic blood pressure was measured, the thoracic aorta was isolated for measurement of vascular reactivity and NO production, and the heart was used for measurement of eNOS expression and/or activity. The blood pressure was elevated in HS mice treated with NG-nitro-l-arginine methyl ester and more so in Cav-1-/- than WT mice and was significantly reduced during the LS diet. Phenylephrine caused vascular contraction that was significantly reduced in Cav-1-/- (maximum 0.25 +/- 0.06 g/mg) compared with WT (0.75 +/- 0.22 g/mg) on the HS diet, and the differences were eliminated with the LS diet. Also, vascular contraction in response to membrane depolarization by high KCl (96 mM) was reduced in Cav-1-/- (0.27 +/- 0.05 g/mg) compared with WT mice (0.53 +/- 0.12 g/mg) on the HS diet, suggesting that the reduced vascular contraction is not limited to a particular receptor. Acetylcholine (10(-5) M) caused aortic relaxation in WT mice on HS (23.6 +/- 3.5%) and LS (23.7 +/- 5.5%) that was enhanced in Cav-1-/- HS (72.6 +/- 6.1%) and more so in Cav-1-/- LS mice (93.6 +/- 3.5%). RT-PCR analysis indicated increased eNOS mRNA expression in the aorta and heart, and Western blots indicated increased total eNOS and phosphorylated eNOS in the heart of Cav-1-/- compared with WT mice on the HS diet, and the genotypic differences were less apparent during the LS diet. Thus Cav-1 deficiency during the HS diet is associated with decreased vasoconstriction, increased vascular relaxation, and increased eNOS expression and activity, and these effects are altered during the LS diet. The data support the hypothesis that endothelial Cav-1, likely through an effect on eNOS activity, plays a prominent role in the regulation of vascular function during substantial changes in dietary sodium intake.  相似文献   

15.
INTRODUCTION: High-normal blood pressure (HNBP) seems to be related to increased cardiovascular risk in healthy, normotensive subjects, while essential hypertension is associated with an increase in extracellular matrix content, especially fibrillar collagen type I. The aim of our study was to investigate whether collagen degradation is altered in healthy normotensives with HNBP, and whether this alteration could be related to disturbances in the matrix metalloproteinases plasma concentration, and to compare the findings to those of healthy normotensives with normal blood pressure (NBP) levels, matched for age, sex and BMI. METHODS: Twenty six (14 males, 12 females) healthy, normotensive patients with HNBP, mean age 52 +/- 5 yrs, and BMI 23 +/- 1.5 kg/m(2) (group A), and 24, healthy normotensive patients (13 males, 11 females) with NBP, mean age 53 +/- 6 yrs, and BMI 23.2 +/- 1.4 kg/m(2) (group B), were studied. The two groups were matched for age, sex and BMI. Plasma levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitors (TIMP-1) and (TIMP-4) were determined by relevant ELISA in the study population. RESULTS: Plasma MMP-9 levels were significantly higher, while TIMP-1 and TIMP-4 levels were significantly lower in group A compared to group B, (MMP-9 579 +/- 147 versus 294 +/- 111 ng/mL, TIMP-1 178 +/- 45 versus 237 +/- 35 ng/mL p < 0.01, and TIMP-4 2.2 +/- 1.4 versus 4.4 +/- 2.1 p < 0.04 respectively). CONCLUSIONS: Our findings suggest that healthy normotensives with high-normal blood pressure have significantly increased MMP-9 and decreased TIMP-1 and TIMP-4 plasma levels compared to healthy normotensives with normal blood pressure. These findings need further investigation.  相似文献   

16.
Mutation in collagen gene induces cardiomyopathy in transgenic mice   总被引:1,自引:0,他引:1  
In many remodeling tissues, such as the heart, collagen degradation to provide new integrin-binding sites is required for survival. However, complete loss of integrin signaling due to disconnection from extracellular matrix (ECM) leads to apoptosis and dilatation. To test the hypothesis that a mutation in type I collagen gene induces cardiomyopathy, we employed a metalloproteinase-resistant collagen mutant homozygous transgenic male (B6,129-Colla-1) and compared with age-sex matched wildtype C57BL/J6 control mice. At the age of 38-42 weeks, aortic and left ventricle (LV) pressure were measured. The LV wall thickness and diameter were measured by a digital micrometer. The levels of matrix metalloproteinase-2 (MMP-2) activity and cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4) were measured by zymography and Western blot analyses, respectively. The levels of collagenolysis were measured by Western blot using anti-collagen antibody. In transgenic and wildtype mice, end-diastolic pressure (EDP) was 8.3 +/- 1.7 and 6.5 +/- 1.1 mmHg; LV diameter was 3.43 +/- 0.07 and 2.94 +/- 0.05 mm; wall thickness was 1.18 +/- 0.03 and 1.28 +/- 0.04 mm; end-diastolic wall stress was 600 +/- 158 and 347 +/- 49 dynes/cm(2), respectively. The increase in LV wall stress was associated with increased MMP-2 activity, increased collagenolysis, and decreased levels of TIMP-4. This leads to reduced elastic compliance in collagen mutant transgenic mice. The occurrence of cardiomyopathy in adult Colla-1 mice may be a significant confounding factor as it may be indicative of increased basal levels of ECM disruption. This phenotype is what would be expected if collagen degradation normally supplies integrin ligands during cardiac muscle remodeling.  相似文献   

17.
Recent studies have been directed at modulating the heart failure process through inhibition of activated matrix metalloproteinases (MMPs). We hypothesized that a loss of MMP inhibitory control by tissue inhibitor of MMP (TIMP)-1 deficiency alters the course of postinfarction chamber remodeling and induced chronic myocardial infarction (MI) in wild-type (WT) and TIMP-1(-/-) mice. Left ventricular (LV) pressure-volume loops obtained from WT and TIMP-1(-/-) mice demonstrated that LV end-diastolic volume [52 +/- 4 (WT) vs. 71 +/- 6 (TIMP-1(-/-)) microl] and LV end-diastolic pressure [9.0 +/- 1.2 (WT) vs. 12.7 +/- 1.4 (TIMP-1(-/-)) mmHg] were significantly increased in the TIMP-1(-/-) mice 2 wk after MI. LV contractility was reduced to a similar degree in the WT and TIMP-1(-/-) groups after MI, as indicated by a significant fall in the LV end-systolic pressure-volume relationship. Ventricular weight and cross-sectional areas of LV myocytes were significantly increased in TIMP-1(-/-) mice, indicating that the hypertrophic response was more pronounced. The observed significant loss of fibrillar collagen in the TIMP-1(-/-) controls may have been an important contributory factor for the observed LV alterations in the TIMP-1(-/-) mice after MI. These findings demonstrate that TIMP-1 deficiency amplifies adverse LV remodeling after MI in mice and emphasizes the importance of local endogenous control of cardiac MMP activity by TIMP-1.  相似文献   

18.
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tissue remodeling processes. TIMP-1 is the main native inhibitor of MMPs and it contributes to the development of tissue fibrosis. It is known that ANG II plays a fundamental role in vascular remodeling. In this study, we investigated whether ANG II modulates TIMP-1 expression in rat aortic smooth muscle cells. In vitro, ANG II induces TIMP-1 mRNA expression in a dose-dependent manner. The maximal increase in TIMP-1 expression was present after 3 h of ANG II stimulation. The ANG II increase in TIMP-1 expression was mediated by the ANG type 1 receptors because it was blocked by losartan. The increase in TIMP-1 expression was present after the first ANG II treatment, whereas repeated treatments (3 and 5 times) did not modify TIMP-1 expression. In vivo, exogenous ANG II was administered to Sprague-Dawley rats (200 ng. kg(-1). min(-1) sc) for 6 and 25 days. Control rats received physiological saline. After treatment, systolic blood pressure was significantly higher (P < 0.01), whereas plasma renin activity was suppressed (P < 0.01), in ANG II-treated rats. ANG II increased TIMP-1 expression in the aorta of ANG II-treated rats both at the mRNA (P < 0.05) and protein levels as evaluated by Western blotting (P < 0.05) and/or immunohistochemistry. Neither histological modifications at the vascular wall nor differences in collagen content in the tunica media were present in both the ANG II- and saline-treated groups. Our data demonstrate that ANG II increases TIMP-1 expression in rat aortic smooth muscle cells. In vivo, both short- and long-term chronic ANG II treatments increase TIMP-1 expression in the rat aorta. TIMP-1 induction by ANG II in aortic smooth muscle cells occurs in the absence of histological changes at the vascular wall.  相似文献   

19.
Short-term hibernating myocardium is characterized by reduced contractile function during persistent moderate ischemia, the recovery of metabolic parameters, and the absence of necrosis. To study the afterload dependence of regional wall excursion in short-term hibernating myocardium, in 11 enflurane-anesthetized swine the left anterior descending coronary artery was cannulated and hypoperfused for 90 min to reduce anterior systolic wall thickening (WT, sonomicrometry) by 60%. Under control conditions, at 5 and 90 min ischemia the descending thoracic aorta was acutely constricted to increase left ventricular (LV) pressure by 30 mmHg. Under control conditions, increased LV pressure resulted in decreased WT [i.e., a negative slope of the relationship between WT and LV end-systolic pressure: -11.2 +/- 4.2 (SD) microm/mmHg]. This slope was further significantly decreased at 5 min ischemia (-26.5 +/- 8.8 microm/mmHg) but returned toward control values in short-term hibernating myocardium at 90 min ischemia (-17.2 +/- 6.6 microm/mmHg). At 30 min reperfusion, the slope was once more significantly decreased (-27.8 +/- 8.1 microm/mmHg). In conclusion, WT in short-term hibernating myocardium is less afterload dependent than in acutely ischemic and reperfused myocardium.  相似文献   

20.
Elevated plasma homocysteine (Hcy) is associated with cerebrovascular disease and activates matrix metalloproteinases (MMPs), which lead to vascular remodeling that could disrupt the blood-brain barrier. To determine whether Hcy administration can increase brain microvascular leakage secondary to activation of MMPs, we examined pial venules by intravital video microscopy through a craniotomy in anesthetized mice. Bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) was injected into a carotid artery to measure extravenular leakage. Hcy (30 microM/total blood volume) was injected 10 min after FITC-BSA injection. Four groups of mice were examined: 1) wild type (WT) given vehicle; 2) WT given Hcy (WT + Hcy); 3) MMP-9 gene knockout given Hcy (MMP-9-/- + Hcy); and 4) MMP-9-/- with topical application of histamine (10(-4) M) (MMP-9-/- + histamine). In the WT + Hcy mice, leakage of FITC-BSA from pial venules was significantly (P < 0.05) greater than in the other groups. There was no significant leakage of pial microvessels in MMP-9-/- + Hcy mice. Increased cerebrovascular leakage in the MMP-9-/- + histamine group showed that microvascular permeability could still increase by a mechanism independent of MMP-9. Treatment of cultured mouse microvascular endothelial cells with 30 microM Hcy resulted in significantly greater F-actin formation than in control cells without Hcy. Treatment with a broad-range MMP inhibitor (GM-6001; 1 microM) ameliorated Hcy-induced F-actin formation. These data suggest that Hcy increases microvascular permeability, in part, through MMP-9 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号