首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

RNA sequencing (RNA-seq) is the current gold-standard method to quantify gene expression for expression quantitative trait locus (eQTL) studies. However, a potential caveat in these studies is that RNA-seq reads carrying the non-reference allele of variant loci can have lower probability to map correctly to the reference genome, which could bias gene quantifications and cause false positive eQTL associations. In this study, we analyze the effect of this allelic mapping bias in eQTL discovery.

Results

We simulate RNA-seq read mapping over 9.5 M common SNPs and indels, with 15.6% of variants showing biased mapping rate for reference versus non-reference reads. However, removing potentially biased RNA-seq reads from an eQTL dataset of 185 individuals has a very small effect on gene and exon quantifications and eQTL discovery. We detect only a handful of likely false positive eQTLs, and overall eQTL SNPs show no significant enrichment for high mapping bias.

Conclusion

Our results suggest that RNA-seq quantifications are generally robust against allelic mapping bias, and that this does not have a severe effect on eQTL discovery. Nevertheless, we provide our catalog of putatively biased loci to allow better controlling for mapping bias to obtain more accurate results in future RNA-seq studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0467-2) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
Using information from allele-specific gene expression (ASE) can improve the power to map gene expression quantitative trait loci (eQTLs). However, such practice has been limited, partly due to computational challenges and lack of clarification on the size of power gain or new findings besides improved power. We have developed geoP, a computationally efficient method to estimate permutation p-values, which makes it computationally feasible to perform eQTL mapping with ASE counts for large cohorts. We have applied geoP to map eQTLs in 28 human tissues using the data from the Genotype-Tissue Expression (GTEx) project. We demonstrate that using ASE data not only substantially improve the power to detect eQTLs, but also allow us to quantify individual-specific genetic effects, which can be used to study the variation of eQTL effect sizes with respect to other covariates. We also compared two popular methods for eQTL mapping with ASE: TReCASE and RASQUAL. TReCASE is ten times or more faster than RASQUAL and it provides more robust type I error control.  相似文献   

5.
《PloS one》2012,7(12)
A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.  相似文献   

6.
The discovery of quantitative trait loci (QTL) in model organisms has relied heavily on the ability to perform controlled breeding to generate genotypic and phenotypic diversity. Recently, we and others have demonstrated the use of an existing set of diverse inbred mice (referred to here as the mouse diversity panel, MDP) as a QTL mapping population. The use of the MDP population has many advantages relative to traditional F(2) mapping populations, including increased phenotypic diversity, a higher recombination frequency, and the ability to collect genotype and phenotype data in community databases. However, these methods are complicated by population structure inherent in the MDP and the lack of an analytical framework to assess statistical power. To address these issues, we measured gene expression levels in hypothalamus across the MDP. We then mapped these phenotypes as quantitative traits with our association algorithm, resulting in a large set of expression QTL (eQTL). We utilized these eQTL, and specifically cis-eQTL, to develop a novel nonparametric method for association analysis in structured populations like the MDP. These eQTL data confirmed that the MDP is a suitable mapping population for QTL discovery and that eQTL results can serve as a gold standard for relative measures of statistical power.  相似文献   

7.
RNA sequencing (RNA-seq) not only measures total gene expression but may also measure allele-specific gene expression in diploid individuals. RNA-seq data collected from F1 reciprocal crosses in mice can powerfully dissect strain and parent-of-origin effects on allelic imbalance of gene expression. In this article, we develop a novel statistical approach to analyze RNA-seq data from F1 and inbred strains. Method development was motivated by a study of F1 reciprocal crosses derived from highly divergent mouse strains, to which we apply the proposed method. Our method jointly models the total number of reads and the number of allele-specific reads of each gene, which significantly boosts power for detecting strain and particularly parent-of-origin effects. The method deals with the overdispersion problem commonly observed in read counts and can flexibly adjust for the effects of covariates such as sex and read depth. The X chromosome in mouse presents particular challenges. As in other mammals, X chromosome inactivation silences one of the two X chromosomes in each female cell, although the choice of which chromosome to be silenced can be highly skewed by alleles at the X-linked X-controlling element (Xce) and stochastic effects. Our model accounts for these chromosome-wide effects on an individual level, allowing proper analysis of chromosome X expression. Furthermore, we propose a genomic control procedure to properly control type I error for RNA-seq studies. A number of these methodological improvements can also be applied to RNA-seq data from other species as well as other types of next-generation sequencing data sets. Finally, we show through simulations that increasing the number of samples is more beneficial than increasing the library size for mapping both the strain and parent-of-origin effects. Unless sample recruiting is too expensive to conduct, we recommend sequencing more samples with lower coverage.  相似文献   

8.
9.
10.
11.
12.
Expression Quantitative Trait Locus (eQTL) analysis is a powerful tool to study the biological mechanisms linking the genotype with gene expression. Such analyses can identify genomic locations where genotypic variants influence the expression of genes, both in close proximity to the variant (cis-eQTL), and on other chromosomes (trans-eQTL). Many traditional eQTL methods are based on a linear regression model. In this study, we propose a novel method by which to identify eQTL associations with information theory and machine learning approaches. Mutual Information (MI) is used to describe the association between genetic marker and gene expression. MI can detect both linear and non-linear associations. What’s more, it can capture the heterogeneity of the population. Advanced feature selection methods, Maximum Relevance Minimum Redundancy (mRMR) and Incremental Feature Selection (IFS), were applied to optimize the selection of the affected genes by the genetic marker. When we applied our method to a study of apoE-deficient mice, it was found that the cis-acting eQTLs are stronger than trans-acting eQTLs but there are more trans-acting eQTLs than cis-acting eQTLs. We compared our results (mRMR.eQTL) with R/qtl, and MatrixEQTL (modelLINEAR and modelANOVA). In female mice, 67.9% of mRMR.eQTL results can be confirmed by at least two other methods while only 14.4% of R/qtl result can be confirmed by at least two other methods. In male mice, 74.1% of mRMR.eQTL results can be confirmed by at least two other methods while only 18.2% of R/qtl result can be confirmed by at least two other methods. Our methods provide a new way to identify the association between genetic markers and gene expression. Our software is available from supporting information.  相似文献   

13.
14.
15.
高通量的基因型分析和芯片技术的发展使人们能够进一步研究哪些遗传差异最终影响基因的表达。通过表达数量性状座位(eQTL)作图方法可对基因表达水平的遗传基础进行解析。与传统的QTL分析方法一样, eQTL的主要目标是鉴别表达性状座位所在的染色体区域。但由于表达谱数据成千上万, 而传统的QTL分析方法最多分析几十个性状, 因此需要考虑这类实验设计的特点以及统计分析方法。本文详细介绍了eQTL定位过程及其研究方法, 重点从个体选择、基因芯片实验设计、基因表达数据的获得与标准化、作图方法及结果分析等方面进行了综述, 指出了当前eQTL研究存在的问题和局限性。最后介绍了eQTL研究在估计基因表达遗传率、挖掘候选基因、构建基因调控网络、理解基因间及基因与环境的互作的应用进展。  相似文献   

16.
17.
With the fast development of high-throughput sequencing technologies, a new generation of genome-wide gene expression measurements is under way. This is based on mRNA sequencing (RNA-seq), which complements the already mature technology of microarrays, and is expected to overcome some of the latter’s disadvantages. These RNA-seq data pose new challenges, however, as strengths and weaknesses have yet to be fully identified. Ideally, Next (or Second) Generation Sequencing measures can be integrated for more comprehensive gene expression investigation to facilitate analysis of whole regulatory networks. At present, however, the nature of these data is not very well understood. In this paper we study three alternative gene expression time series datasets for the Drosophila melanogaster embryo development, in order to compare three measurement techniques: RNA-seq, single-channel and dual-channel microarrays. The aim is to study the state of the art for the three technologies, with a view of assessing overlapping features, data compatibility and integration potential, in the context of time series measurements. This involves using established tools for each of the three different technologies, and technical and biological replicates (for RNA-seq and microarrays, respectively), due to the limited availability of biological RNA-seq replicates for time series data. The approach consists of a sensitivity analysis for differential expression and clustering. In general, the RNA-seq dataset displayed highest sensitivity to differential expression. The single-channel data performed similarly for the differentially expressed genes common to gene sets considered. Cluster analysis was used to identify different features of the gene space for the three datasets, with higher similarities found for the RNA-seq and single-channel microarray dataset.  相似文献   

18.
The analysis of allele-specific gene expression (ASE) is essential for the mapping of genetic variants that affect gene regulation, and for the identification of alleles that modify disease risk. Although RNA sequencing offers the opportunity to measure expression at allele levels, the availability of powerful statistical methods for mapping ASE in single or multiple individuals is limited. We developed a maximum likelihood model to characterize ASE in the human genome. Approximately 17% of genes displayed an allele-specific effect on gene expression in a single individual. Simulations using our model gave a better performance and improved robustness when compared with the binomial test, with different coverage levels, allelic expression fractions and random noise. In addition, our method can identify ASE in multiple individuals, with enhanced performance. This is helpful in understanding the mechanism of genetic regulation leading to expression changes, alternative splicing variants and even disease susceptibility.  相似文献   

19.
20.
Prior expression quantitative trait locus (eQTL) studies have demonstrated heritable variation determining differences in gene expression. The majority of eQTL studies were based on cell lines and normal tissues. We performed cis-eQTL analysis using glioblastoma multiforme (GBM) data sets obtained from The Cancer Genome Atlas (TCGA) to systematically investigate germline variation’s contribution to tumor gene expression levels. We identified 985 significant cis-eQTL associations (FDR<0.05) mapped to 978 SNP loci and 159 unique genes. Approximately 57% of these eQTLs have been previously linked to the gene expression in cell lines and normal tissues; 43% of these share cis associations known to be associated with functional annotations. About 25% of these cis-eQTL associations are also common to those identified in Breast Cancer from a recent study. Further investigation of the relationship between gene expression and patient clinical information identified 13 eQTL genes whose expression level significantly correlates with GBM patient survival (p<0.05). Most of these genes are also differentially expressed in tumor samples and organ-specific controls (p<0.05). Our results demonstrated a significant relationship of germline variation with gene expression levels in GBM. The identification of eQTLs-based expression associated survival might be important to the understanding of genetic contribution to GBM cancer prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号