首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last decades the activity of material scientists was more and more directed to the development of biomimetic scaffolds, able to drive and address cell activity towards proper differentiation and the repair of diseased human tissues. In case of bone, this requires the synthesis of three-dimensional constructs able to exchange chemical signals promoting osteogenesis and to progressively be resorbed during the formation and remodelling of new bone. Besides, particularly for the regeneration of extensive portions of bone, a morphological and mechanical biomimesis is also required, to allow cell colonization and formation of a proper vascularization tree. The healing of load-bearing bones also requires scaffolds with a hierarchically organized morphology, to provide improved biomechanical behaviour and allow a proper mechano-transduction of the mechanical stimuli down to the cell level. The present paper is an overview of the current technologies and devices developed in the last decade for the regeneration of bone tissue. In particular, novel biomimetic and biomorphic scaffolds, obtained by the controlled transformation of native ligneous structures, promise to adequately face the problem of obtaining complex hierarchical structures, not achievable otherwise by any currently existing manufacturing techniques.  相似文献   

2.
In tissue engineering studies, scaffolds play a very important role in offering both physical and chemical cues for cell growth and tissue regeneration. However, in some cases, tissue regeneration requires scaffolds with high mechanical properties (e.g., bone and cartilage), while cells need a soft mechanical microenvironment. In this study, to mimic the heterogenous mechanical properties of a spinal cord tissue, a biomimetic rat tissue construct is fabricated. A collagen-coated poly(lactic-co-glycolic acid) scaffold is manufactured using thermally induced phase separation casting. Primary rat neural cells (P01 Wistar rat cortex) with soft hydrogels are later printed within the scaffold using an image-guided intrascaffold cell assembly technique. The scaffolds have unidirectional microporous structure with parallel axial macrochannels (260 ± 4 µm in diameter). Scaffolds showed mechanical properties similar to rat spine (ultimate tensile strength: 0.085 MPa, Young's modulus [stretch]: 0.31 MPa). The bioink composed of gelatin/alginate/fibrinogen is precisely printed into the macrochannels and showed mechanical properties suitable for neural cells (Young's modulus [compressive]: 3.814 kPa). Scaffold interface, cell viability, and immunostaining analyses show uniform distribution of stable, healthy, and elongated neural cells and neurites over 14 culture days in vitro. The results demonstrated that this method can serve as a valuable tool to aid manufacturing of tissue constructs requiring heterogenous mechanical properties for complex cell and/or biomolecule assembly.  相似文献   

3.
Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering purposes, with the main advantage of being fully customizable 3D structures.  相似文献   

4.
A growing array of synthetic bone regeneration scaffolds has been used or investigated over the last century. These scaffolds aim to provide a three dimensional substrate for bone cells to populate on and function appropriately. To serve this function, these scaffolds should be biocompatible and biodegradable at a rate commensurate with bone remodelling. Their mechanical properties should also be similar to those of the bone regeneration site. In this review, the main families of synthetic bone scaffolds were taxonomised and expounded. The main focus of this paper will be on the basic sciences principles and properties of clinical available as well as experimental synthetic bone scaffolds. Special emphasis was put on scaffolds developed over the last ten years.  相似文献   

5.
Bone tissue engineering requires highly proliferative stem cells that are easy to isolate. Human urine stem cells (USCs) are abundant and can be easily harvested without using an invasive procedure. In addition, in our previous studies, USCs have been proved to be able to differentiate into osteoblasts, chondrocytes, and adipocytes. Therefore, USCs may have great potential and advantages to be applied as a cell source for tissue engineering. However, there are no published studies that describe the interactions between USCs and biomaterials and applications of USCs for bone tissue engineering. Therefore, the objective of the present study was to evaluate the interactions between USCs with a typical bone tissue engineering scaffold, beta-Tricalcium Phosphate (β-TCP), and to determine whether the USCs seeded onto β-TCP scaffold can promote bone regeneration in a segmental femoral defect of rats. Primary USCs were isolated from urine and seeded on β-TCP scaffolds. Results showed that USCs remained viable and proliferated within β-TCP. The osteogenic differentiation of USCs within the scaffolds was demonstrated by increased alkaline phosphatase activity and calcium content. Furthermore, β-TCP with adherent USCs (USCs/β-TCP) were implanted in a 6-mm critical size femoral defect of rats for 12 weeks. Bone regeneration was determined using X-ray, micro-CT, and histologic analyses. Results further demonstrated that USCs in the scaffolds could enhance new bone formation, which spanned bone defects in 5 out of 11 rats while β-TCP scaffold alone induced modest bone formation. The current study indicated that the USCs can be used as a cell source for bone tissue engineering as they are compatible with bone tissue engineering scaffolds and can stimulate the regeneration of bone in a critical size bone defect.  相似文献   

6.
The design of porous scaffolds for tissue engineering requires methods to generate geometries in order to control the stiffness and the permeability of the implant among others characteristics. This article studied the potential of the reaction-diffusion systems to design porous scaffolds for bone regeneration. We simulate the degradation of the scaffold material and the formation of new bone tissue over canal-like, spherical and ellipsoid structures obtained by this approach. The simulations show that the degradation and growth rates are affected by the form of porous structures. The results have indicated that the proposed method has potential as a tool to generate scaffolds with internal porosities and is comparable with other methodologies to obtain this type of structures.  相似文献   

7.
Mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances osteogenic differentiation and overall bone tissue formation by mesenchymal stems cells cultured in biomaterial scaffolds for tissue engineering applications. In silico techniques can be used to predict the mechanical environment within biomaterial scaffolds, and also the relationship between bone tissue regeneration and mechanical stimulation, and thereby inform conditions for bone tissue engineering experiments. In this study, we investigated bone tissue regeneration in an idealised hydrogel scaffold using a mechano-regulation model capable of predicting tissue differentiation, and specifically compared five loading cases, based on known experimental bioreactor regimes. These models predicted that low levels of mechanical loading, i.e. compression (0.5% strain), pore pressure of 10 kPa and a combination of compression (0.5%) and pore pressure (10 kPa), could induce more osteogenic differentiation and lead to the formation of a higher bone tissue fraction. In contrast greater volumes of cartilage and fibrous tissue fractions were predicted under higher levels of mechanical loading (i.e. compression strain of 5.0% and pore pressure of 100 kPa). The findings in this study may provide important information regarding the appropriate mechanical stimulation for in vitro bone tissue engineering experiments.  相似文献   

8.
A growing array of synthetic bone regeneration scaffolds has been in use over the last century. These scaffolds aim to provide a three dimensional substrate for bone cells to populate on and to function appropriately. The majority of commercially-available scaffolds are based on calcium sulphate salts, calcium phosphate salts, or composites of the two. The mechanical and biological properties of these scaffolds are a result of the properties of the constituent materials and their ratio in the composite. This review addresses the mechanical and biological characteristics and provides an up-to-date summary of the clinical data available about the use of these calcium-based scaffolds. It will also assess the benefit of using stem cell technology along with this type of scaffolds. This article links between the basic science evidence and the clinical outcomes and details the commercially-available options.  相似文献   

9.
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014.Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance.In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated.  相似文献   

10.
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.  相似文献   

11.
Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.  相似文献   

12.
Bone tissue regeneration using scaffolds is receiving an increasing interest in orthopedic surgery and tissue engineering applications. In this study, we present the geometrical characterization of a specific family of scaffolds based on a face cubic centered (FCC) arrangement of empty pores leading to analytical formulae of porosity and specific surface. The effective behavior of those scaffolds, in terms of mechanical properties and permeability, is evaluated through the asymptotic homogenization theory applied to a representative volume element identified with the unit cell FCC. Bone growth into the scaffold is estimated by means of a phenomenological model that considers a macroscopic effective stress as the mechanical stimulus that regulates bone formation. Cell migration within the scaffold is modeled as a diffusion process based on Fick's law which allows us to estimate the cell invasion into the scaffold microstructure. The proposed model considers that bone growth velocity is proportional to the concentration of cells and regulated by the mechanical stimulus. This model allows us to explore what happens within the scaffold, the surrounding bone and their interaction. The mathematical model has been numerically implemented and qualitatively compared with previous experimental results found in the literature for a scaffold implanted in the femoral condyle of a rabbit. Specifically, the model predicts around 19 and 23% of bone regeneration for non-grafted and grafted scaffolds, respectively, both with an initial porosity of 76%.  相似文献   

13.
Therapies using adult stem cells often require mechanical manipulation such as injection or incorporation into scaffolds. However, force-induced rupture and mechanosensitivity of cells during manipulation is largely ignored. Here, we image cell mechanical structures and perform a biophysical characterization of three different types of human adult stem cells: bone marrow CD34+ hematopoietic, bone marrow mesenchymal and perivascular mesenchymal stem cells. We use micropipette aspiration to characterize cell mechanics and quantify deformation of subcellular structures under force and its contribution to global cell deformation. Our results suggest that CD34+ cells are mechanically suitable for injection systems since cells transition from solid- to fluid-like at constant aspiration pressure, probably due to a poorly developed actin cytoskeleton. Conversely, mesenchymal stem cells from the bone marrow and perivascular niches are more suitable for seeding into biomaterial scaffolds since they are mechanically robust and have developed cytoskeletal structures that may allow cellular stable attachment and motility through solid porous environments. Among these, perivascular stem cells cultured in 6% oxygen show a developed cytoskeleton but a more compliant nucleus, which can facilitate the penetration into pores of tissues or scaffolds. We confirm the relevance of our measurements using cell motility and migration assays and measure survival of injected cells. Since different types of adult stem cells can be used for similar applications, we suggest considering mechanical properties of stem cells to match optimal mechanical characteristics of therapies.  相似文献   

14.
The nervous system is a crucial component of the body and damages to this system, either by of injury or disease, can result in serious or potentially lethal consequences. Restoring the damaged nervous system is a great challenge due to the complex physiology system and limited regenerative capacity.Polymers, either synthetic or natural in origin, have been extensively evaluated as a solution for restoring functions in damaged neural tissues. Polymers offer a wide range of versatility, in particular regarding shape and mechanical characteristics, and their biocompatibility is unmatched by other biomaterials, such as metals and ceramics. Several studies have shown that polymers can be shaped into suitable support structures, including nerve conduits, scaffolds, and electrospun matrices, capable of improving the regeneration of damaged neural tissues. In general, natural polymers offer the advantage of better biocompatibility and bioactivity, while synthetic or non-natural polymers have better mechanical properties and structural stability. Often, combinations of the two allow for the development of polymeric conduits able to mimic the native physiological environment of healthy neural tissues and, consequently, regulate cell behaviour and support the regeneration of injured nervous tissues.Currently, most of neural tissue engineering applications are in pre-clinical study, in particular for use in the central nervous system, however collagen polymer conduits aimed at regeneration of peripheral nerves have already been successfully tested in clinical trials.This review highlights different types of natural and synthetic polymers used in neural tissue engineering and their advantages and disadvantages for neural regeneration.  相似文献   

15.
Biomimetic mineralization of collagen is an advantageous method to obtain resorbable collagen/hydroxy-apatite composites for application in bone regeneration. In this report, established procedures for mineralization of bovine collagen were adapted to a new promising source of collagen from salmon skin challenged by the low denaturation temperature. Therefore, in the first instance, variation of temperature, collagen concentration, and ionic strength was performed to reveal optimized parameters for fibrillation and simultaneous mineralization of salmon collagen. Porous scaffolds from mineralized salmon collagen were prepared by controlled freeze-drying and chemical cross-linking. FT-IR analysis demonstrated the mineral phase formed during the preparation process to be hydroxyapatite. The scaffolds exhibited interconnecting porosity, were sufficiently stable under cyclic compression, and showed elastic mechanical properties. Human mesenchymal stem cells were able to adhere to the scaffolds, cell number increased during cultivation, and osteogenic differentiation was demonstrated in terms of alkaline phosphatase activity.  相似文献   

16.
Electrospun scaffolds hold promise for the regeneration of dense connective tissues, given their nanoscale topographies, provision of directional cues for infiltrating cells and versatile composition. Synthetic slow-degrading scaffolds provide long-term mechanical support and nanoscale instructional cues; however, these scaffolds suffer from a poor infiltration rate. Alternatively, nanofibrous constructs formed from natural biomimetic materials (such as collagen) rapidly infiltrate but provide little mechanical support. To take advantage of the positive features of these constructs, we have developed a composite scaffold consisting in both a biomimetic fiber fraction (i.e., Type I collagen nanofibers) together with a traditional synthetic (i.e., poly-[ε-caprolactone], PCL) fiber fraction. We hypothesize that inclusion of biomimetic elements will improve initial cell adhesion and eventual scaffold infiltration, whereas the synthetic elements will provide controlled and long-term mechanical support. We have developed a method of forming and crosslinking collagen nanofibers by using the natural crosslinking agent genipin (GP). Further, we have formed composites from collagen and PCL and evaluated the long-term performance of these scaffolds when seeded with mesenchymal stem cells. Our results demonstrate that GP crosslinking is cytocompatible and generates stable nanofibrous type I collagen constructs. Composites with varying fractions of the biomimetic and synthetic fiber families are formed and retain their collagen fiber fractions during in vitro culture. However, at the maximum collagen fiber fractions (20%), cell ingress is limited compared with pure PCL scaffolds. These results provide a new foundation for the development and optimization of biomimetic/synthetic nanofibrous composites for in vivo tissue engineering.  相似文献   

17.
The induction of bone formation requires three parameters that interact in a highly regulated process: soluble osteoinductive signals, capable responding cells, and a supporting matrix substratum or insoluble signal. The use of recombinant and naturally derived bone morphogenetic proteins and transforming growth factor beta(s) (TGF-beta(s)) has increased our understanding of the functions of these morphogens during the induction of endochondral bone formation. In addition, growing understanding of the cellular interactions of living tissues with synthetic biomaterials has led to the in vivo induction of bone formation using porous biomimetic matrices as an alternative to the use of autografts for bone regeneration. This review outlines the basis of bone tissue engineering by members of the TGF-beta superfamily, focusing on their delivery systems and the intrinsic induction of bone formation by specific biomimetic matrices with a defined geometry.  相似文献   

18.
19.
New development of biomaterial scaffolds remains a prominent issue for the regeneration of lost or fractured bone. Of these scaffolds, a number of bioactive polymers have been synthesized and fabricated for diverse biological roles. Although recent evidence has demonstrated that composite scaffolds such as HA/PLLA have improved properties when compared to either HA or PLLA alone, recent investigations have demonstrated that the phase compatibility between HA and PLLA layers is weak preventing optimal enhancement of the mechanical properties and making the composites prone to breakdown. In the present study, poly (γ-benzyl-L-glutamate) modified hydroxyapatite/(poly (L-lactic acid)) (PBLG-g-HA/PLLA) composite scaffolds were fabricated with improved phase compatibility and tested for their osteogenic properties in 18 Wistar female rats by analyzing new bone formation in 3 mm bilateral femur defects in vivo. At time points, 2, 4 and 8 weeks post surgery, bone formation was evaluated by µ-CT and histological analysis by comparing 4 treatment groups; 1) blank defect, 2) PLLA, 3) HA/PLLA and 4) PBLG-g-HA/PLLA scaffolds. The in vivo analysis demonstrated that new bone formation was much more prominent in HA/PLLA and PBLG-g-HA/PLLA groups as depicted by µ-CT, H&E staining and immunohistochemistry for collagen I. TRAP staining was also utilized to determine the influence of osteoclast cell number and staining intensity to the various scaffolds. No significant differences in either staining intensity or osteoclast numbers between all treatment modalities was observed, however blank defects did contain a higher number of osteoclast-like cells. The results from the present study illustrate the potential of PBLG-g-HA/PLLA scaffolds for bone tissue engineering applications by demonstrating favorable osteogenic properties.  相似文献   

20.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号