首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A surrogate endpoint is an endpoint that is obtained sooner, at lower cost, or less invasively than the true endpoint for a health outcome and is used to make conclusions about the effect of intervention on the true endpoint. In this approach, each previous trial with surrogate and true endpoints contributes an estimated predicted effect of intervention on true endpoint in the trial of interest based on the surrogate endpoint in the trial of interest. These predicted quantities are combined in a simple random-effects meta-analysis to estimate the predicted effect of intervention on true endpoint in the trial of interest. Validation involves comparing the average prediction error of the aforementioned approach with (i) the average prediction error of a standard meta-analysis using only true endpoints in the other trials and (ii) the average clinically meaningful difference in true endpoints implicit in the trials. Validation is illustrated using data from multiple randomized trials of patients with advanced colorectal cancer in which the surrogate endpoint was tumor response and the true endpoint was median survival time.  相似文献   

2.
The evaluation of surrogate endpoints for primary use in future clinical trials is an increasingly important research area, due to demands for more efficient trials coupled with recent regulatory acceptance of some surrogates as 'valid.' However, little consideration has been given to how a trial that utilizes a newly validated surrogate endpoint as its primary endpoint might be appropriately designed. We propose a novel Bayesian adaptive trial design that allows the new surrogate endpoint to play a dominant role in assessing the effect of an intervention, while remaining realistically cautious about its use. By incorporating multitrial historical information on the validated relationship between the surrogate and clinical endpoints, then subsequently evaluating accumulating data against this relationship as the new trial progresses, we adaptively guard against an erroneous assessment of treatment based upon a truly invalid surrogate. When the joint outcomes in the new trial seem plausible given similar historical trials, we proceed with the surrogate endpoint as the primary endpoint, and do so adaptively-perhaps stopping the trial for early success or inferiority of the experimental treatment, or for futility. Otherwise, we discard the surrogate and switch adaptive determinations to the original primary endpoint. We use simulation to test the operating characteristics of this new design compared to a standard O'Brien-Fleming approach, as well as the ability of our design to discriminate trustworthy from untrustworthy surrogates in hypothetical future trials. Furthermore, we investigate possible benefits using patient-level data from 18 adjuvant therapy trials in colon cancer, where disease-free survival is considered a newly validated surrogate endpoint for overall survival.  相似文献   

3.
Ghosh D 《Biometrics》2009,65(2):521-529
Summary .  There has been a recent emphasis on the identification of biomarkers and other biologic measures that may be potentially used as surrogate endpoints in clinical trials. We focus on the setting of data from a single clinical trial. In this article, we consider a framework in which the surrogate must occur before the true endpoint. This suggests viewing the surrogate and true endpoints as semicompeting risks data; this approach is new to the literature on surrogate endpoints and leads to an asymmetrical treatment of the surrogate and true endpoints. However, such a data structure also conceptually complicates many of the previously considered measures of surrogacy in the literature. We propose novel estimation and inferential procedures for the relative effect and adjusted association quantities proposed by Buyse and Molenberghs (1998, Biometrics 54, 1014–1029). The proposed methodology is illustrated with application to simulated data, as well as to data from a leukemia study.  相似文献   

4.
The validation of surrogate endpoints has been studied by Prentice (1989). He presented a definition as well as a set of criteria, which are equivalent only if the surrogate and true endpoints are binary. Freedman et al. (1992) supplemented these criteria with the so-called 'proportion explained'. Buyse and Molenberghs (1998) proposed replacing the proportion explained by two quantities: (1) the relative effect linking the effect of treatment on both endpoints and (2) an individual-level measure of agreement between both endpoints. The latter quantity carries over when data are available on several randomized trials, while the former can be extended to be a trial-level measure of agreement between the effects of treatment of both endpoints. This approach suggests a new method for the validation of surrogate endpoints, and naturally leads to the prediction of the effect of treatment upon the true endpoint, given its observed effect upon the surrogate endpoint. These ideas are illustrated using data from two sets of multicenter trials: one comparing chemotherapy regimens for patients with advanced ovarian cancer, the other comparing interferon-alpha with placebo for patients with age-related macular degeneration.  相似文献   

5.
Wang Y  Taylor JM 《Biometrics》2002,58(4):803-812
Randomized clinical trials with rare primary endpoints or long duration times are costly. Because of this, there has been increasing interest in replacing the true endpoint with an earlier measured marker. However, surrogate markers must be appropriately validated. A quantitative measure for the proportion of treatment effect explained by the marker in a specific trial is a useful concept. Freedman, Graubard, and Schatzkin (1992, Statistics in Medicine 11, 167-178) suggested such a measure of surrogacy by the ratio of regression coefficients for the treatment indicator from two separate models with or without adjusting for the surrogate marker. However, it has been shown that this measure is very variable and there is no guarantee that the two models both fit. In this article, we propose alternative measures of the proportion explained that adapts an idea in Tsiatis, DeGruttola, and Wulfsohn (1995, Journal of the American Statistical Association 90, 27-37). The new measures require fewer assumptions in estimation and allow more flexibility in modeling. The estimates of these different measures are compared using data from an ophthalmology clinical trial and a series of simulation studies. The results suggest that the new measures are less variable.  相似文献   

6.
Gilbert PB  Hudgens MG 《Biometrics》2008,64(4):1146-1154
SUMMARY: Frangakis and Rubin (2002, Biometrics 58, 21-29) proposed a new definition of a surrogate endpoint (a "principal" surrogate) based on causal effects. We introduce an estimand for evaluating a principal surrogate, the causal effect predictiveness (CEP) surface, which quantifies how well causal treatment effects on the biomarker predict causal treatment effects on the clinical endpoint. Although the CEP surface is not identifiable due to missing potential outcomes, it can be identified by incorporating a baseline covariate(s) that predicts the biomarker. Given case-cohort sampling of such a baseline predictor and the biomarker in a large blinded randomized clinical trial, we develop an estimated likelihood method for estimating the CEP surface. This estimation assesses the "surrogate value" of the biomarker for reliably predicting clinical treatment effects for the same or similar setting as the trial. A CEP surface plot provides a way to compare the surrogate value of multiple biomarkers. The approach is illustrated by the problem of assessing an immune response to a vaccine as a surrogate endpoint for infection.  相似文献   

7.
Li Y  Taylor JM  Little RJ 《Biometrics》2011,67(4):1434-1441
In clinical trials, a biomarker (S ) that is measured after randomization and is strongly associated with the true endpoint (T) can often provide information about T and hence the effect of a treatment (Z ) on T. A useful biomarker can be measured earlier than T and cost less than T. In this article, we consider the use of S as an auxiliary variable and examine the information recovery from using S for estimating the treatment effect on T, when S is completely observed and T is partially observed. In an ideal but often unrealistic setting, when S satisfies Prentice's definition for perfect surrogacy, there is the potential for substantial gain in precision by using data from S to estimate the treatment effect on T. When S is not close to a perfect surrogate, it can provide substantial information only under particular circumstances. We propose to use a targeted shrinkage regression approach that data-adaptively takes advantage of the potential efficiency gain yet avoids the need to make a strong surrogacy assumption. Simulations show that this approach strikes a balance between bias and efficiency gain. Compared with competing methods, it has better mean squared error properties and can achieve substantial efficiency gain, particularly in a common practical setting when S captures much but not all of the treatment effect and the sample size is relatively small. We apply the proposed method to a glaucoma data example.  相似文献   

8.
A two-stage procedure using occurrences of a surrogate endpoint regarding a true clinical endpoint has been proposed (FLANDRE, O'QUIGLEY and BROOKMEYER, 1994). The procedure allows estimation of the survival function S(t) reliably and comparison of treatment groups. The aim of this paper is to investigate the efficiency of such a two-stage procedure compared to a one stage procedure, i.e. a classical study. The efficiency is estimated by the ratio of the standard derivation of S(t) for the classical procedure to the standard derivation of S(t) for the two-stage procedure and represents the precision on the estimation of S(t). Standard deviation of S(t) is approximate by the delta-method. Using the exponential model. some numerical results are presented.  相似文献   

9.
Venkatraman ES  Begg CB 《Biometrics》1999,55(4):1171-1176
A nonparametric test is derived for comparing treatments with respect to the final endpoint in clinical trials in which the final endpoint has been observed for a random subset of patients, but results are available for a surrogate endpoint for a larger sample of patients. The test is an adaptation of the Wilcoxon-Mann-Whitney two-sample test, with an adjustment that involves a comparison of the ranks of the surrogate endpoints between patients with and without final endpoints. The validity of the test depends on the assumption that the patients with final endpoints represent a random sample of the patients registered in the study. This assumption is viable in trials in which the final endpoint is evaluated at a "landmark" timepoint in the patients' natural history. A small sample simulation study demonstrates that the test has a size that is close to the nominal value for all configurations evaluated. When compared with the conventional test based only on the final endpoints, the new test delivers substantial increases in power only when the surrogate endpoint is highly correlated with the true endpoint. Our research indicates that, in the absence of modeling assumptions, auxiliary information derived from surrogate endpoints can provide significant additional information only under special circumstances.  相似文献   

10.
Ibrahim JG  Chen MH  Xia HA  Liu T 《Biometrics》2012,68(2):578-586
Recent guidance from the Food and Drug Administration for the evaluation of new therapies in the treatment of type 2 diabetes (T2DM) calls for a program-wide meta-analysis of cardiovascular (CV) outcomes. In this context, we develop a new Bayesian meta-analysis approach using survival regression models to assess whether the size of a clinical development program is adequate to evaluate a particular safety endpoint. We propose a Bayesian sample size determination methodology for meta-analysis clinical trial design with a focus on controlling the type I error and power. We also propose the partial borrowing power prior to incorporate the historical survival meta data into the statistical design. Various properties of the proposed methodology are examined and an efficient Markov chain Monte Carlo sampling algorithm is developed to sample from the posterior distributions. In addition, we develop a simulation-based algorithm for computing various quantities, such as the power and the type I error in the Bayesian meta-analysis trial design. The proposed methodology is applied to the design of a phase 2/3 development program including a noninferiority clinical trial for CV risk assessment in T2DM studies.  相似文献   

11.
J Raz  B Turetsky  G Fein 《Biometrics》1989,45(3):745-762
Brain evoked potential (EP) data consist of a true response ("signal") and random background activity ("noise"), which are observed over repeated stimulus presentations ("trials"). A signal that changes slowly from trial to trial can be estimated by smoothing across trials and over time within trials. We present a method for selecting the smoothing parameter by minimizing an estimate of the mean average squared error (MASE). We evaluate the performance of this method using simulated EP data, and apply the method to an example set of real flash evoked potentials.  相似文献   

12.
When the true end points (T) are difficult or costly to measure, surrogate markers (S) are often collected in clinical trials to help predict the effect of the treatment (Z). There is great interest in understanding the relationship among S, T, and Z. A principal stratification (PS) framework has been proposed by Frangakis and Rubin (2002) to study their causal associations. In this paper, we extend the framework to a multiple trial setting and propose a Bayesian hierarchical PS model to assess surrogacy. We apply the method to data from a large collection of colon cancer trials in which S and T are binary. We obtain the trial-specific causal measures among S, T, and Z, as well as their overall population-level counterparts that are invariant across trials. The method allows for information sharing across trials and reduces the nonidentifiability problem. We examine the frequentist properties of our model estimates and the impact of the monotonicity assumption using simulations. We also illustrate the challenges in evaluating surrogacy in the counterfactual framework that result from nonidentifiability.  相似文献   

13.
K K Lan  J M Lachin 《Biometrics》1990,46(3):759-770
To control the Type I error probability in a group sequential procedure using the logrank test, it is important to know the information times (fractions) at the times of interim analyses conducted for purposes of data monitoring. For the logrank test, the information time at an interim analysis is the fraction of the total number of events to be accrued in the entire trial. In a maximum information trial design, the trial is concluded when a prespecified total number of events has been accrued. For such a design, therefore, the information time at each interim analysis is known. However, many trials are designed to accrue data over a fixed duration of follow-up on a specified number of patients. This is termed a maximum duration trial design. Under such a design, the total number of events to be accrued is unknown at the time of an interim analysis. For a maximum duration trial design, therefore, these information times need to be estimated. A common practice is to assume that a fixed fraction of information will be accrued between any two consecutive interim analyses, and then employ a Pocock or O'Brien-Fleming boundary. In this article, we describe an estimate of the information time based on the fraction of total patient exposure, which tends to be slightly negatively biased (i.e., conservative) if survival is exponentially distributed. We then present a numerical exploration of the robustness of this estimate when nonexponential survival applies. We also show that the Lan-DeMets (1983, Biometrika 70, 659-663) procedure for constructing group sequential boundaries with the desired level of Type I error control can be computed using the estimated information fraction, even though it may be biased. Finally, we discuss the implications of employing a biased estimate of study information for a group sequential procedure.  相似文献   

14.
Neoadjuvant endocrine therapy trials for breast cancer are now a widely accepted investigational approach for oncology cooperative group and pharmaceutical company research programs. However, there remains considerable uncertainty regarding the most suitable endpoints for these studies, in part, because short-term clinical, radiological or biomarker responses have not been fully validated as surrogate endpoints that closely relate to long-term breast cancer outcome. This shortcoming must be addressed before neoadjuvant endocrine treatment can be used as a triage strategy designed to identify patients with endocrine therapy “curable” disease. In this summary, information from published studies is used as a basis to critique clinical trial designs and to suggest experimental endpoints for future validation studies. Three aspects of neoadjuvant endocrine therapy designs are considered: the determination of response; the assessment of surgical outcomes; and biomarker endpoint analysis. Data from the letrozole 024 (LET 024) trial that compared letrozole and tamoxifen is used to illustrate a combined endpoint analysis that integrates both clinical and biomarker information. In addition, the concept of a “cell cycle response” is explored as a simple post-treatment endpoint based on Ki67 analysis that might have properties similar to the pathological complete response endpoint used in neoadjuvant chemotherapy trials.  相似文献   

15.
Huang Y  Gilbert PB 《Biometrics》2011,67(4):1442-1451
Recently a new definition of surrogate endpoint, the "principal surrogate," was proposed based on causal associations between treatment effects on the biomarker and on the clinical endpoint. Despite its appealing interpretation, limited research has been conducted to evaluate principal surrogates, and existing methods focus on risk models that consider a single biomarker. How to compare principal surrogate value of biomarkers or general risk models that consider multiple biomarkers remains an open research question. We propose to characterize a marker or risk model's principal surrogate value based on the distribution of risk difference between interventions. In addition, we propose a novel summary measure (the standardized total gain) that can be used to compare markers and to assess the incremental value of a new marker. We develop a semiparametric estimated-likelihood method to estimate the joint surrogate value of multiple biomarkers. This method accommodates two-phase sampling of biomarkers and is more widely applicable than existing nonparametric methods by incorporating continuous baseline covariates to predict the biomarker(s), and is more robust than existing parametric methods by leaving the error distribution of markers unspecified. The methodology is illustrated using a simulated example set and a real data set in the context of HIV vaccine trials.  相似文献   

16.
A popular design for clinical trials assessing targeted therapies is the two-stage adaptive enrichment design with recruitment in stage 2 limited to a biomarker-defined subgroup chosen based on data from stage 1. The data-dependent selection leads to statistical challenges if data from both stages are used to draw inference on treatment effects in the selected subgroup. If subgroups considered are nested, as when defined by a continuous biomarker, treatment effect estimates in different subgroups follow the same distribution as estimates in a group-sequential trial. This result is used to obtain tests controlling the familywise type I error rate (FWER) for six simple subgroup selection rules, one of which also controls the FWER for any selection rule. Two approaches are proposed: one based on multivariate normal distributions suitable if the number of possible subgroups, k, is small, and one based on Brownian motion approximations suitable for large k. The methods, applicable in the wide range of settings with asymptotically normal test statistics, are illustrated using survival data from a breast cancer trial.  相似文献   

17.
Jiang Q  Snapinn S  Iglewicz B 《Biometrics》2004,60(3):800-806
Sample size calculations for survival trials typically include an adjustment to account for the expected rate of noncompliance, or discontinuation from study medication. Existing sample size methods assume that when patients discontinue, they do so independently of their risk of an endpoint; that is, that noncompliance is noninformative. However, this assumption is not always true, as we illustrate using results from a published clinical trial database. In this article, we introduce a modified version of the method proposed by Lakatos (1988, Biometrics 44, 229-241) that can be used to calculate sample size under informative noncompliance. This method is based on the concept of two subpopulations: one with high rates of endpoint and discontinuation and another with low rates. Using this new method, we show that failure to consider the impact of informative noncompliance can lead to a considerably underpowered study.  相似文献   

18.
Sample sizes vary substantially across tissues in the Genotype-Tissue Expression (GTEx) project, where considerably fewer samples are available from certain inaccessible tissues, such as the substantia nigra (SSN), than from accessible tissues, such as blood. This severely limits power for identifying tissue-specific expression quantitative trait loci (eQTL) in undersampled tissues. Here we propose Surrogate Phenotype Regression Analysis (Spray ) for leveraging information from a correlated surrogate outcome (eg, expression in blood) to improve inference on a partially missing target outcome (eg, expression in SSN). Rather than regarding the surrogate outcome as a proxy for the target outcome, Spray jointly models the target and surrogate outcomes within a bivariate regression framework. Unobserved values of either outcome are treated as missing data. We describe and implement an expectation conditional maximization algorithm for performing estimation in the presence of bilateral outcome missingness. Spray estimates the same association parameter estimated by standard eQTL mapping and controls the type I error even when the target and surrogate outcomes are truly uncorrelated. We demonstrate analytically and empirically, using simulations and GTEx data, that in comparison with marginally modeling the target outcome, jointly modeling the target and surrogate outcomes increases estimation precision and improves power.  相似文献   

19.
Summary We consider a clinical trial with a primary and a secondary endpoint where the secondary endpoint is tested only if the primary endpoint is significant. The trial uses a group sequential procedure with two stages. The familywise error rate (FWER) of falsely concluding significance on either endpoint is to be controlled at a nominal level α. The type I error rate for the primary endpoint is controlled by choosing any α‐level stopping boundary, e.g., the standard O'Brien–Fleming or the Pocock boundary. Given any particular α‐level boundary for the primary endpoint, we study the problem of determining the boundary for the secondary endpoint to control the FWER. We study this FWER analytically and numerically and find that it is maximized when the correlation coefficient ρ between the two endpoints equals 1. For the four combinations consisting of O'Brien–Fleming and Pocock boundaries for the primary and secondary endpoints, the critical constants required to control the FWER are computed for different values of ρ. An ad hoc boundary is proposed for the secondary endpoint to address a practical concern that may be at issue in some applications. Numerical studies indicate that the O'Brien–Fleming boundary for the primary endpoint and the Pocock boundary for the secondary endpoint generally gives the best primary as well as secondary power performance. The Pocock boundary may be replaced by the ad hoc boundary for the secondary endpoint with a very little loss of secondary power if the practical concern is at issue. A clinical trial example is given to illustrate the methods.  相似文献   

20.
BACKGROUND: Surrogate measures for cardiovascular disease events have the potential to increase greatly the efficiency of clinical trials. A leading candidate for such a surrogate is the progression of intima-media thickness (IMT) of the carotid artery; much experience has been gained with this endpoint in trials of HMG-CoA reductase inhibitors (statins). METHODS AND RESULTS: We examine two separate systems of criteria that have been proposed to define surrogate endpoints, based on clinical and statistical arguments. We use published results and a formal meta-analysis to evaluate whether progression of carotid IMT meets these criteria for HMG-CoA reductase inhibitors (statins).IMT meets clinical-based criteria to serve as a surrogate endpoint for cardiovascular events in statin trials, based on relative efficiency, linkage to endpoints, and congruency of effects. Results from a meta-analysis and post-trial follow-up from a single published study suggest that IMT meets established statistical criteria by accounting for intervention effects in regression models. CONCLUSION: Carotid IMT progression meets accepted definitions of a surrogate for cardiovascular disease endpoints in statin trials. This does not, however, establish that it may serve universally as a surrogate marker in trials of other agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号