首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper from this laboratory it was shown that EC.F1 ATPase exhibits a temperature dependent transition between two stable states, called L (low activity) and H (high activity). They differ three-fold in specific activity. I report here the effects of ADP and ATP on this transition. Both nucleotides were found to shift the equilibrium between the two states in the direction of the L state. Further, the velocity of conversion from one state to the other was accelerated by the presence of the nucleotides. It was shown that the two states of the enzyme exhibit different kinetic properties in that: (i) the L state gives a hyperbolic curve when specific activity is plotted against substrate concentration, and ADP produces an immediate competitive inhibition and (ii) the H state exhibits negative cooperativity when such a curve is plotted, and shows a delayed competitive inhibition by ADP. Furthermore, when enzyme in the H state is loaded with ATP its complex kinetic behavior disappears; ADP does not have this effect. The data are interpreted to mean that the H state depleted of ATP may act as an enzyme bearing two alternative catalytic sites.  相似文献   

2.
基因工程酶法结合酵母能量耦联高效合成L-谷氨酰胺的研究   总被引:12,自引:0,他引:12  
通过PCR方法从Bacillus subtilis基因组DNA中扩增出谷氨酰胺合成酶基因(glnA),克隆至表达载体pET28b, 经测序鉴定后转化大肠杆菌BL21(DE3), 用IPTG及乳糖诱导表达。 SDSPAGE分析表明,所表达的谷氨酰胺合成酶(glutamine synthetase ,简称GS)为可溶性蛋白,约占总菌蛋白的80%。利用表达的GS蛋白 N端的6×HisTag 对GS进行亲和层析,将获得的纯蛋白进行酶活性测定。结果表明,纯化的GS合成反应的最适温度为60℃,最适pH为6.5,Mn2+能明显提高GS的活性和稳定性。工程菌BL21(DE3)/pET28b-glnA粗提物中GS的比活是宿主菌本身的84倍。以谷氨酸、NH4Cl和ATP为底物的转化实验表明谷氨酸的转化率达95%以上。 经筛选获得一株高效能量耦联酵母菌株,命名为YC001;通过能量耦联表明,该系统对谷氨酸的转化率高达80%,平均谷氨酰胺产量为22g/L。  相似文献   

3.
Abstract: The activity of the astrocytic enzyme glutamine synthetase (GS) is decreased in the Alzheimer's disease brain, which may have relevance to mechanisms of chronic excitotoxicity. The molecular perturbation(s) that results in GS inactivation is not known, although oxidative lesioning of the enzyme is one likely cause. To assess structural perturbation induced in GS by metal-catalyzed oxidation, a series of spin-labeling studies were undertaken. Ovine GS was oxidized by exposure to iron/hydrogen peroxide and subsequently labeled with the thiol-specific nitroxide probe MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate]. The reaction of MTS with cysteine residues within GS was monitored in real time by electron paramagnetic resonance spectrometry. Structural perturbation of GS, manifested as decreased thiol accessibility, was inferred from an apparent decrease in the rate constant for the second-order reaction of MTS with protein thiols. A subsequent spin-labeling study was undertaken to compare the structural integrity of GS purified and isolated from Alzheimer's disease-afflicted brain (AD-GS) with that of GS isolated from nondemented, age-matched control brain (C-GS). The rate constant for reaction of MTS with AD-GS was markedly decreased relative to that for the reaction of spin label with C-GS. The kinetic data were partially corroborated by spectroscopic data obtained from circular dichroism analysis of control and peroxide-treated ovine GS. In an adjunct experiment, the interaction of GS with a synthetic analogue of the Alzheimer's-associated β-amyloid peptide, known to induce free radical oxidative stress, indicated strong interaction of the enzyme with the peptide as reflected by a decrease in the rate constant for MTS binding to reactive protein thiols.  相似文献   

4.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

5.
We have studied the kinetics and reaction mechanism of the carbamylphosphate synthetase of an enzyme aggregate functioning in the pyrimidine pathway of yeast. MG--ATP was found to be one of the substrates of the enzyme reaction which was activated by free Mg-2+ and inhibited by free ATP. Feedback inhibition by UTP was non-competitive with respect to both glutamine and bicarbonate. Potassium ions were essential for activity and could not be replaced by sodium. Glutamine could be replaced partially by ammonium ions as nitrogen donor. A bicarbonate-dependent cleavage of ATP was shown to take place in the absence of L-glutamine; L-glutamate was a competitive inhibitor of L-glutamine and the enzyme was shown to synthesize ATP when incubated with ADP and carbamyl phosphate. The reaction mechanism was found to involve sequential addition of the substrates bicarbonate and Mg--ATP and release of ADP, followed by addition of the third substrate glutamine. The purine nucleotide XMP had a pronounced activating effect on the enzyme, acting at a site different from that of UTP. Saturating levels of Mg--ATP eliminated this activation.  相似文献   

6.
L-Glutaminase (L-glutamine amidohydrolase, EC 3.5.1.2) is the important enzyme that catalyzes the deamination of L-glutamine to L-glutamic acid and ammonium ions. Recently, L-glutaminase has received much attention with respect to its therapeutic and industrial applications. It acts as a potent antileukemic agent and shows flavor-enhancing capacity in the production of fermented foods. Glutaminase activity is widely distributed in plants, animal tissues, and microorganisms, including bacteria, yeasts, and fungi. This study presents microbial production of glutaminase enzyme from Hypocrea jecorina pure culture and determination of optimum conditions and calculation of kinetic parameters of the produced enzyme. The optimum values were determined by using sa Nesslerization reaction for our produced glutaminase enzyme. The optimum pH value was determined as 8.0 and optimum temperature as 50°C for the glutaminase enzyme. The Km and Vmax values, the kinetic parameters, of enzyme produced from Hypocrea jecorina, pure culture were determined as 0.491 mM for Km and 13.86 U/L for Vmax by plotted Lineweaver–Burk graphing, respectively. The glutaminase enzyme from H. jecorina microorganism has very high thermal and storage stability.  相似文献   

7.
Phosphofructokinase-2 from rat liver is inhibited by phosphoenolpyruvate and ADP. Phosphoenolpyruvate reduces the maximum activity in respect to fructose-6-phosphate and ATP but does not give rise to complete inhibition of phosphofructokinase-2. ADP increases the apparent Michaelis constant of the enzyme for ATP and leaves the maximum activity in respect to ATP unchanged. The apparent Michaelis constant for fructose-6-phosphate is not influenced by ADP.  相似文献   

8.
The purification and some properties of glutamine synthetase (GS) from the mycelium of the basidiomycete Pleurotus ostreatus are described. The enzyme was purified to apparent homogeneity with ion exchange chromatography and a Dyematrex Green A column as the major purification steps. The GS has a molecular weight of 470 kDa and is composed of eight subunits with a molecular weight of 58 kDa. A tetrameric form of the enzyme may also be active. The apparent K m values for the biosynthetic reaction varied in different mycelial extracts from 2.5 to 3.5 mM and from 0.02 to 0.06 for glutamate and ammonium respectively. In the transferase reaction, K m values of 48 mM and 6.2 mM were found for L-glutamine and hydroxylamine, respectively. From the divalent cations tested, Mn2+ showed the strongest stimulatory effect both on the transferase and the biosynthetic reaction. ADP was the only nucleotide having an activating effect on the transferase reaction. The biosynthetic reaction was strongly inhibited by AMP and the transferase reaction by carbamoylphosphate. L-Alanine and glycine inhibited both reactions. Received: 21 February 1996/Accepted: 12 March 1996  相似文献   

9.
Glutamine Synthetase of the Human Brain: Purification and Characterization   总被引:2,自引:1,他引:1  
Glutamine synthetase (GS) isolated from human brain formed a single band on sodium dodecyl sulfate-polyacrylamide gel with a molecular weight of 44,000. The enzyme had a specific activity of 179.2 U/mg protein when assayed by measuring the rate of the formation of gamma-glutamylhydroxamate using hydroxylamine as a substrate. In the presence of manganese ions, the relative activity of human brain GS was much lower than that of the sheep brain enzyme. The suppression of activity by increasing the ADP concentration, however, was less marked in the human enzyme than that in the sheep enzyme. Antibodies were raised in rabbits against the purified enzyme. The double-immunodiffusion technique disclosed cross-reactivities among GSs isolated from human, sheep, and rat brains, but the enzymes were not immunologically identical. Immunohistochemically, GS was localized in the cytoplasm of astrocytes in the human and rat brains and in pericentral hepatocytes of the liver.  相似文献   

10.
D W Pettigrew  G J Yu  Y Liu 《Biochemistry》1990,29(37):8620-8627
Substrate binding to Escherichia coli glycerol kinase (EC 2.7.1.30; ATP-glycerol 3-phosphotransferase) was investigated by using both kinetics and binding methods. Initial-velocity studies in both reaction directions show a sequential kinetic mechanism with apparent substrate activation by ATP and substrate inhibition by ADP. In addition, the Michaelis constants differ greatly from the substrate dissociation constants. Results of product inhibition studies and dead-end inhibition studies using 5'-adenylyl imidodiphosphate show the enzyme has a random kinetic mechanism, which is consistent with the observed formation of binary complexes with all the substrates and the glycerol-independent MgATPase activity of the enzyme. Dissociation constants for substrate binding determined by using ligand protection from inactivation by N-ethylmaleimide agree with those estimated from the initial-velocity studies. Determinations of substrate binding stoichiometry by equilibrium dialysis show half-of-the-sites binding for ATP, ADP, and glycerol. Thus, the regulation by nucleotides does not appear to reflect binding at a separate regulatory site. The random kinetic mechanism obviates the need to postulate such a site to explain the formation of binary complexes with the nucleotides. The observed stoichiometry is consistent with a model for the nucleotide regulatory behavior in which the dimer is the enzyme form present in the assay and its subunits display different substrate binding affinities. Several properties of the enzyme are consistent with negative cooperativity as the basis for the difference in affinities. The possible physiological importance of the regulatory behavior with respect to ATP is considered.  相似文献   

11.
L P Solheim  H J Fromm 《Biochemistry》1983,22(9):2234-2239
Kinetic studies were used to investigate the mode of brain hexokinase (EC 2.7.1.1, ATP:D-hexose 6-phosphotransferase) regulation by glucose 6-phosphate (glucose-6-P), ADP, and inorganic phosphate (Pi). A model for regulation of brain hexokinase by glucose-6-P and Pi had been proposed from initial-rate studies and binding experiments [Ellison, W. R., Lueck, J. D., & Fromm, H. J. (1975) J. Biol. Chem. 250, 1864-1871]. The results of the present investigation demonstrate that Pi is an activator of the brain hexokinase reaction when the reaction is studied in the nonphysiological direction. Evidence is presented which indicates that the back-reaction substrates and Pi can bind the enzyme simultaneously, and the suggestion is made that Pi binds to an allosteric site on the enzyme. These findings are in marked contrast to results obtained in the absence of ADP which convincingly demonstrate that glucose-6-P and Pi are mutually exclusive binding ligands for brain hexokinase. The kinetic data can be reconciled with the model for hexokinase regulation within the context of the well-established kinetic mechanism for brain hexokinase.  相似文献   

12.
Pyruvate kinase of sea bass (Dicentrarchus labrax L.) shows positive cooperativity with respect to both substrates PEP and ADP. The temperature is a modulator of this activity, changing KS0.5 and Hill coefficient values for PEP. The enzyme shows alanine and ATP inhibition and F-1,6-P2 activation at 22 degrees C. F-1,6-P2 eliminates the effect of alanine but not that of ATP. These results could indicate a regulation of this enzyme by temperature and possess kinetic properties which are similar to that of L-type mammals.  相似文献   

13.
Ovine brain glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design alpha- and gamma-substituted analogues of phosphinothricin [L-2-amino-4-(hydroxymethylphosphinyl)butanoic acid], a naturally occurring inhibitor of GS. These compounds display competitive inhibition of GS, and a correlation between the inhibitor Ki values and the Km/Vmax values of the analogously substituted glutamates supports the hypothesis that the phosphinothricins participate in transition-state analogue inhibition of GS. At concentrations greater than Ki these inhibitors caused biphasic time-dependent loss of enzyme activity, with initial pseudo-first-order behavior; k'inact parameters were determined for several compounds and were similar to the 2.1 X 10(-2)s-1 value measured for PPT. Dilution after GS inactivation caused a non-first-order recovery of activity. Reactivation kinetics were insensitive to inhibitor and ADP concentrations over wide ranges, although very high postdilution concentrations of inhibitor suppressed reactivation. The burst activity level, beta, as well as the concentration of inhibitor required to suppress reactivation to this level, mu, expressed as a multiple of the Ki value, was characteristic for each compound in the phosphinothricin series. Increasing substitution of the phosphinothricin parent structure caused an increase in Ki values as well as in the inactivation/reactivation parameters. The kinetic behavior of these inhibitors is consistent with a mechanistic scheme involving initial phosphorylation and rapid partial inhibitor dissociation, followed by slow release of remaining bound inhibitor.  相似文献   

14.
Adenylate deaminase from rat skeletal muscle has been studied with the objective of understanding how the activity of the enzyme is regulated in vivo. ATP and GTP inhibit the enzyme at low concentrations in the presence of 150 mM KCl. The ATP inhibition is reversed as the ATP concentration is raised to physiological levels. The GTP inhibition is reversed as the GTP concentration is raised to unphysiologically high levels. In the presence of physiological concentrations of ATP, the GTP inhibition is also greatly diminished, but inhibition by orthophosphate remains strong. The apparent affinities of the enzyme for GTP, ATP, and orthophosphate are reduced as the pH is decreased from 7.0 to 6.2. ADP also reduces the apparent affinities of the enzyme for the inhibitors. The regulatory effects of GTP, ATP, and ADP are produced primarily by their unchelated forms. Comparison of the kinetic behavior of the enzyme in vitro with metabolite concentrations in vivo indicates that the major variables that regulate the activity of adenylate deaminase of muscle in vivo are the concentrations of AMP, ADP, orthophosphate, and H+.  相似文献   

15.
Two isozymes of glutamine synthetase GS1 and GS2 were partially purified from Pennisetum glaucum leaves by ion-exchange and gel filtration chromatography and their kinetic and regulatory properties were studied using semisynthetase assay of GS. Mg2+ was the most effective cation for activity of both the isozymes; however, it could be efficiently replaced by Co2+. The pH optima for GS1 and GS2 were 7.0 and 8.0, respectively. GS1 exhibited maximum activity at 42 degrees C, with activation energy of 18 KJ mol(-1) and a Q10 of 3.0, whereas GS2 showed maximum activity at 50 degrees C, with activation energy of 40 KJ mol(-1) and Q10 of 2.25. GS1 was more thermostable than GS2. The Km value for Mg2+ of GS1 was 2-fold higher than GS2; however, these isozymes did not differ much in their affinity for other substrates. Alanine, serine and glycine lowered GS1 and GS2 activities, whereas cysteine enhanced their activities with a more pronounced effect on GS2. Serine inhibited the activity of both the isoforms in a competitive-manner, whereas alanine was a non-competitive inhibitor, with respect to glutamate. AMP and ADP were competitive inhibitor with respect to ATP for both the isozymes.  相似文献   

16.
Kinetic properties of cerebral pyruvate kinase   总被引:2,自引:1,他引:1       下载免费PDF全文
Partly purified guinea-pig brain pyruvate kinase is not activated by fructose 1,6-diphosphate and gives hyperbolic substrate-saturation curves with phosphoenolpyruvate. It is therefore different from the L-type pyruvate kinase of mammalian liver. Inhibition by MgATP(2-) was competitive for MgADP(-) but not for phosphoenolpyruvate, and the enzyme is therefore different from the M-type pyruvate kinase, which is said to be competitively inhibited by MgATP(2-) with respect to both substrates. The K(i)(MgATP(2-)) value of approx. 8mm for the brain enzyme is higher than the values (about 2mm) reported for the muscle enzyme. Stimulation of enzymic activity was observed at low (1-2mm) concentrations of MgATP(2-). Substrate kinetic constants were K(m) (MgADP(-))=0.47mm, K(m) (phosphoenolpyruvate)=0.08mm. Free Mg(2+) at very high concentrations (over 10mm) was inhibitory (K(i)=20-32mm). Neither ADP(3-) nor 5'-AMP(2-) inhibited the activity. The brain enzyme was concluded to be different from both the M-type and the L-type of other mammalian organs such as muscle and liver.  相似文献   

17.
Choline kinase in Cuscuta reflexa   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Choline kinase is a mitochondrial enzyme in Cuscuta reflexa. It can be solubilized from the particles by treatment with 350mm-sodium chloride, or by freezing and thawing. 2. Choline kinase of C. reflexa was purified by starting from the crude mitochondrial fraction. A 33-52% recovery of the enzyme, on the basis of the activity in the original homogenate, in 1200-2250-fold enrichment, was effected. 3. The purified preparation of choline kinase had a sigmoid saturation curve with respect to choline, with a Hill number of 2.3, and was inhibited by ADP (competitive in nature and allosteric in binding, with a Hill number of 2.7) and by phosphorylcholine (non-competitive and non-allosteric). The kinetic characteristics of the enzyme were consistent with the K type allosteric model of Monod et al. (1965). 4. The enzyme was desensitized, with respect to choline regulation, by prolonged storage in the cold, was activated significantly on warming before assay and was inactivated by high concentrations of sodium chloride. 5. The significance of allostery in choline kinase in relation to the intracellular regulation of phospholipid synthesis is discussed.  相似文献   

18.
Some properties of membrane ATPase activity in Veillonella alcalescens were examined. Mg2+ is required for the activity of the enzyme, and Ca2+ also activates the enzyme to some degree. Of the nucleotide triphosphates, GTP and ITP were hydrolyzed to a lesser extent than ATP. The apparent Km for ATP hydrolysis was 0.25 to 0.63 mM. ADP inhibited the enzyme and the kinetic data of its inhibition showed that the presence of ADP resulted in positive cooperativity. The enzyme activity was strongly inhibited by DCCD, azide, fusidic acid and the antibody to purified soluble ATPase from the thermophilic bacterium PS3. Oligomycin, dinitrophenol, and ouabain showed no significant effect.  相似文献   

19.
Phosphatidic acid phosphatase (EC 3.1.3.4) was purified 30-fold by ammonium sulfate fractionation and hydroxyapatite chromatography from the soluble fraction of rat liver. ADP was found to stimulate the enzyme activity with half-maximal stimulation at 0.2 mM. Similar effects were seen when ADP was replaced by GDP or CDP. In contrast, ATP inhibited the enzyme; half-maximal inhibition observed at 0.2 mM. Again, the degree of inhibition did not differ when GTP or CTP replaced ATP. Thus, the structure of the base part of the nucleotide was not critical for mediating these effects. The positions of the phosphate groups in the nucleotide structure were however found to be of importance for the enzyme activity. Variations in the structure of the phosphate ester bound at the 5'-position had a pronounced effect on phosphatidic acid phosphatase activity. The effect of nucleotides depended on pH, and the inhibition by ATP was more pronounced at pH levels lower than 7.0, whereas the stimulatory effect of ADP was virtually the same from pH 6.0 to pH 8.0. The enzyme showed substrate saturation kinetics with respect to phosphatidic acid, with an apparent Km of 0.7 mM. Km increased in the presence of ATP, whereas both apparent Vmax and Km increased in the presence of ADP, suggesting different mechanisms for the action of the two types of nucleotides. The results indicated that physiological levels of nucleotides with a diphosphate or a triphosphate ester bound at the 5'-position of the ribose moiety influenced the activity of phosphatidic acid phosphatase. The possibility is discussed that these effects might be of importance for the regulation of triacylglycerol biosynthesis.  相似文献   

20.
6-phosphofructo-1-kinase (PFK) was purified to homogeneity from liver of gilthead sea bream (Sparus aurata) and kinetic properties of the enzyme were determined. The native enzyme had an apparent molecular mass of 510 kDa and was composed of 86 kDa subunits, suggesting homohexameric structure. At pH 7, S. aurata liver PFK (PFKL) showed sigmoidal kinetics for fructose-6-phosphate (fru-6-P) and hyperbolic kinetics for ATP. Fructose-2,6-bisphosphate (fru-2,6-P2) converted saturation curves for fru-6-P to hyperbolic and activated PFKL synergistically with AMP. Fru-2,6-P2 counteracted the inhibition caused by ATP, ADP and citrate. Compared to the S. aurata muscle isozyme, PFKL had lower affinity for fru-6-P, higher cooperativity, hyperbolic kinetics in relation to ATP, increased susceptibility to inhibition by ATP, and was less affected by AMP, ADP and inhibition by 3-phosphoglycerate, phosphoenolpyruvate, 6-phosphogluconate or phosphocreatine. The effect of starvation-refeeding on PFKL expression was studied at the levels of enzyme activity and protein content in the liver of S. aurata. Our findings indicate that short-term recovery of PFKL activity after refeeding previously starved fish, may result from allosteric regulation by fru-2,6-P2, whereas combination of activation by fru-2,6-P2 and increase in protein content may determine the long-term recovery of the enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号