首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

2.
Regulation of lactose (beta-D-galactosidase) synthesis in the lactose-utilizing yeast Candida pseudotropicalis was studied. The enzyme was inducible by lactose and galactose. When grown on these sugars the enzyme level of the yeast was 20 times or higher than when grown on glycerol. The Km and optimal pH were similar for the lactase induced either by lactose or galactose. The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside by the lactase was inhibited by galactose and several analogs and galactosides, but not by glucose. Lactose uptake activity observed in lactose-grown cells was very reduced in cells grown on glucose or galactose. Glucose repressed the induction of lactase, but not the metabolic system for galactose utilization. In continuous culture on lactose medium at dilution rates below 0.2 h-1 the specific lactase activity was higher than in batch cultures and decreased with increases in dilution rate. Lactase was induced by pulses of lactose and galactose in cells growing on glucose, but only at low dilution rates were the steady-state concentration of glucose was very low.  相似文献   

3.
Specificity of substrate recognition in lactose permease is directed toward the galactosyl moiety of lactose. In this study, binding of 31 structural analogues of D-galactose was examined by site-directed N-[(14)C]ethylmaleimide-labeling of the substrate-protectable Cys148 in the binding site. Alkylation of Cys148 is blocked by D-galactose with an apparent affinity of approximately 30 mM. Epimers of D-galactose at C-3 (D-gulose) and C-4 (D-glucose) or deoxy derivatives at these positions exhibit no binding whatsoever, indicating that these OH groups participate in essential interactions. Interestingly, the C-2 epimer alpha-D-talose binds almost as well as D-galactose, while 2-deoxy-D-galactose affords no substrate protection, indicating that nonstereospecific H-bonding at C-2 is required for stable binding. No substrate protection is detected with D-fucose, L-arabinose, 6-deoxy-6-fluoro-D-galactose, 6-O-methyl-D-galactose, or D-galacturonic acid, suggesting that the C-6 OH is an essential H-bond donor. Both alpha- and beta-methyl D-galactopyranosides bind more strongly than galactose, supporting the notion that the cyclic pyranose conformation is the bound form and that the anomeric configuration at C-1 does not contribute to substrate specificity. However, methyl or allyl alpha-D-galactopyranosides exhibit 60-fold lower apparent K(d)'s than D-galactose, demonstrating that binding affinity is significantly influenced by the functional group at C-1 and its orientation. Taken together, the observations confirm and extend the current binding site model [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] and indicate that specificity toward galactopyranosides is governed by H-bonding interactions at C-2, C-3, C-4, and C-6 OH groups, while binding affinity can be increased dramatically by hydrophobic interactions with the nongalactosyl moiety.  相似文献   

4.
H Ahmed  H J Allen  A Sharma  K L Matta 《Biochemistry》1990,29(22):5315-5319
A galactose-binding lectin (galaptin) from human spleen has been purified to homogeneity by affinity chromatography on asialofetuin-Sepharose. The carbohydrate-binding specificity of galaptin has been investigated by analyzing the binding of galaptin to asialofetuin in the presence of putative inhibitors. An enzyme-linked immunosorbent assay (ELISA) was developed that involved adsorption of asialofetuin to microtiter plates. Galaptin bound to asialofetuin was detected with polyclonal rabbit anti-galaptin serum followed by goat anti-rabbit IgG-peroxidase conjugate. The concentrations of inhibitors giving 50% inhibition of galaptin binding relative to controls were graphically determined and normalized relative to galactose or lactose. These analyses revealed that galaptin has a combining site at least as large as a disaccharide. The disaccharides having non-reducing-terminal beta-galactosyl residues linked (1,3), (1,4), and (1,6) to Glc or GlcNAc are better inhibitors than free Gal. GalNAc, either free or glycosidically linked, appears to have no affinity for the lectin. The nitrophenyl galactosides are better inhibitors than methyl galactosides, indicating the occurrence of hydrophobic interactions. The data indicate that OH groups at C-4 and C-6 of Gal and the OH at C-3 of GlcNAc in Gal beta(1,4)GlcNAc are important for lectin sugar interaction. Our data support the hypothesis that endogenous receptors for galaptin are most likely lactosaminoglycan moieties.  相似文献   

5.
6.
The lactose transport protein (LacS) of Streptococcus thermophilus catalyzes the uptake of lactose in an exchange reaction with intracellularly formed galactose. The interactions between the substrate and the cytoplasmic and extracellular binding site of LacS have been characterized by assaying binding and transport of a range of sugars in proteoliposomes, in which the purified protein was reconstituted with a unidirectional orientation. Specificity for galactoside binding is given by the spatial configuration of the C-2, C-3, C-4, and C-6 hydroxyl groups of the galactose moiety. Except for a C-4 methoxy substitution, replacement of the hydroxyl groups for bulkier groups is not tolerated at these positions. Large hydrophobic or hydrophilic substitutions on the galactose C-1 alpha or beta position did not impair transport. In fact, the hydrophobic groups increased the binding affinity but decreased transport rates compared with galactose. Binding and transport characteristics of deoxygalactosides from either side of the membrane showed that the cytoplasmic and extracellular binding site interact differently with galactose. Compared with galactose, the IC(50) values for 2-deoxy- and 6-deoxygalactose at the cytoplasmic binding site were increased 150- and 20-fold, respectively, whereas they were the same at the extracellular binding site. From these and other experiments, we conclude that the binding sites and translocation pathway of LacS are spacious along the C-1 to C-4 axis of the galactose moiety and are restricted along the C-2 to C-6 axis. The differences in affinity at the cytoplasmic and extracellular binding site ensure that the transport via LacS is highly asymmetrical for the two opposing directions of translocation.  相似文献   

7.
Extracts of Bradyrhizobium japonicum were fractionated on Sepharose columns covalently derivatized with lactose. Elution of the material that was specifically bound to the affinity column with lactose yielded a protein of Mr approximately 38,000. Isoelectric focusing of this sample yielded two spots with pI values of 6.4 and 6.8. This protein specifically bound to galactose-containing glycoconjugates, but did not bind either to glucose or mannose. Derivatives of galactose at the C-2 position showed much weaker binding; there was an 18-fold difference in the relative binding affinities of galactose versus N-acetyl-D-galactosamine. These results indicate that we have purified a newly identified carbohydrate-binding protein from Bradyrhizobium japonicum, that can exquisitely distinguish galactose from its derivatives at the C-2 position.  相似文献   

8.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

9.
Enzyme IIlac, the membrane-bound component of the lactose phosphotransferase system of Staphylococcus aureus, catalyzes the phosphorylation-transport reaction below:
(The sugar can be lactose or one of its analogs.) The effects of the non-ionic detergents Triton X-100, Brij 35, and Tween 40 on the activity of Enzyme IIlac were studied. Especially striking effects were observed using Triton X-100, a detergent previously used to solubilize and isolate this enzyme. A systematic study of Triton effects over a range of concentrations and temperatures demonstrated three aspects of Triton-membrane interaction. At 0.1% Triton and 25° C Enzyme IIlac is activated, but remains particulate. At 0.5% Triton and 25° C, it is almost completely solubilized, with good retention of activity. At 0.5% Triton and 37° C, it is rapidly and irreversibly inactivated. Sugar substrates and inhibitory sugar analogs protect Enzyme IIlac against inactivation; the effect is specific for β-galactosides. The other substrates of Enzyme IIlac, phospho-Factor IIIlac, does not affect Triton inactivation, and the product analog galactose 6-phosphate slightly enhances the inactivation rate.  相似文献   

10.
The sugar specificity properties of the lactose permease were investigated. Free galactose was shown to competitively inhibit the lactose permease yielding a Ki value of 7.4 mM. This value was severalfold higher than the observed Km for lactose (1.3 mM). A variety of other monosaccharides also showed significant inhibition of lactose transport. With regard to -OH groups along the galactose ring it appears that the relative importance is OH-3 greater than OH-4 greater than OH-6 greater than OH-2 greater than OH-1. In general, galactosides with alpha-linkages exhibited significantly higher affinities compared with their beta-linked counterparts. An optimal size for the aglycone portion of the galactoside was reached with aglycones containing hexose residues or a benzene ring. The preferred size of the aglycone appears to be hexose, benzene ring greater than methyl group greater than no aglycone much greater than disaccharide greater than trisaccharide. However, neither the specific structure of the aglycone nor its relative hydrophobicity appeared to be important factors in permease recognition. For example, the hydrophobic beta-nitrophenyl-galactosides had lower affinities compared with lactose (a beta-galactoside), whereas the alpha-nitrophenylgalactosides generally had higher affinities compared with melibiose (an alpha-galactoside). In addition, no consistent preference was seen when considering the location of the nitro group on the benzene ring. From this work, a model is presented which depicts the binding of galactosides to the lactose permease.  相似文献   

11.
Liu C  Baumann H 《Carbohydrate research》2002,337(14):1297-1307
A new regioselective synthesis of 6-amino-6-deoxycellulose with a DS 1.0 (degree of substitution) at C-6, and its 6-N-sulfonated and its 6-N-carboxymethylated derivatives, without using protecting groups is described in this paper. The reaction conditions were optimized for preparing cellulose tosylate with full tosylation at C-6 and partial tosylation at C-2 and C-3. The nucleophilic substitution (S(N)) reaction of the tosyl group by NaN(3) at low temperature of 50 degrees C in Me(2)SO was achieved completely at C-6, whereas the tosyl groups at C-2 and C-3 were not displaced. In contrast to this, at 100 degrees C the tosyl groups at C-6, and also those at C-2 and C-3, were replaced by azido groups. This regioselective reaction that depends on temperature makes it possible to reach a selective and quantitative S(N) reaction at C-6 at low temperatures. In the subsequent reduction step with LiAlH(4), the azido group at C-6 was reduced to the amino group, and the tosyl groups at C-2 and C-3 were simultaneously completely removed. Also reported is a temperature-dependent, regioselective and complete iodination by nucleophilic substitution of the tosyl group at C-6 at 60 degrees C. At higher temperatures from 75 to 130 degrees C, substitution is also observed to occur at C-2. The selective iodination at 60 degrees C was employed to confirm the complete tosylation at C-6 of cellulose. The reaction products were identified by four different independent quantitative methods, namely 13C NMR, elemental analysis, ESCA, and fluorescence spectroscopy. 6-N-Sulfonated and 6-N-carboxymethylated cellulose derivatives were also synthesized. The new derivatives are potent candidates for structure-function studies, e.g., studies in relation to regioselectively 2-N-sulfonated and 2-N-carboxymethylated chitosan derivatives.  相似文献   

12.
The interaction of Ricinus communis hemagglutinin with galactose and lactose has been studied by means of microcalorimetry, equilibrium dialysis and analytical ultracentrifugation. A first class of beta-galactoside-binding sites involves two similar and independent sites of which affinity constants are 2600 M-1 for galactose and 26700 M-1 for lactose at 25 degrees C. The binding of one galactose or one lactose molecule leads to enthalpy changes of--12.3 Kcal and--11 Kcal, respectively. Considering the negative entropy changes of the association, and as for ricin, the binding of galactosides with hemagglutinin is driven by favorable enthalpic contributions. In presence of high lactose concentrations, a second endothermic step of the calorimetric titration curve was observed. This result and the biphasic nature of Scatchard plots of equilibrium dialysis suggest the existence of a second class of binding sites on the lectin molecule. As for ricin, the interaction between these secondary sites and lactose would be entropically driven.  相似文献   

13.
Metabolism of Lactose by Staphylococcus aureus and Its Genetic Basis   总被引:19,自引:13,他引:6  
THE METABOLISM OF LACTOSE WAS FOUND TO BE CONTROLLED BY THREE GENES: a gene for the synthesis of a beta-galactosidase attacking only phosphorylated galactosides; a gene for a protein permitting concentration of phosphorylated galactosides which probably acts by transferring phosphates to them; and a gene regulating the first two structural genes. The three genes are closely linked and may have the same order as in Escherichia coli. Galactose-6-phosphate was found to be a better inducer of lactose utilization than is galactose or any other inducer. The inhibition of induction by isopropylthiogalactoside was found to occur at the level of the protein permitting the concentration of galactoside phosphates.  相似文献   

14.
The lactose transport protein (LacS) of Streptococcus thermophilus is a chimeric protein consisting of an amino-terminal carrier domain and a carboxyl-terminal phosphoenolpyruvate:sugar phosphotransferase system (PTS) IIA protein domain. The histidine residues of LacS were changed individually into glutamine or arginine residues. Of the 11 histidine residues present in LacS, only the His-376 substitution in the carrier domain significantly affected sugar transport. The region around His-376 was found to exhibit sequence similarity to the region around His-322 of the lactose transport protein (LacY) of Escherichia coli, which has been implicated in sugar binding and in coupling of sugar and H+ transport. The H376Q mutation resulted in a reduced rate of uptake and altered affinity for lactose (beta-galactoside), melibiose (alpha-galactoside), and the lactose analog methyl-beta-D-thiogalactopyranoside. Similarly, the extent of accumulation of the galactosides by cells expressing LacS(H376Q) was highly reduced in comparison to cells bearing the wild-type protein. Nonequilibrium exchange of lactose and methyl-beta-D-thiogalactopyranoside by the H376Q mutant was approximately 2-fold reduced in comparison to the activity of the wild-type transport protein. The data indicate that His-376 is involved in sugar recognition and is important, but not essential, for the cotransport of protons and galactosides. The carboxyl-terminal domain of LacS contains 2 histidine residues (His-537 and His-552) that are conserved in seven homologous IIA protein(s) (domains) of PTSs. P-enolpyruvate-dependent phosphorylation of wild-type LacS, but not of the mutant H552Q, was demonstrated using purified Enzyme I and HPr, the general energy coupling proteins of the PTS, and inside-out membrane vesicles isolated from E. coli in which the lactose transport gene was expressed. The His-537 and His-552 mutations did not affect transport activity when the corresponding genes were expressed in E. coli.  相似文献   

15.
Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei.  相似文献   

16.
The ability to discriminate between galactose and N- acetylgalactosamine, observed in some lectins, is crucial for their biological activity as well as their usefulness as tools in biology and medicine. However, the molecular basis of differential binding of lectins to these two sugars is poorly understood. Peanut agglutinin (PNA) is one of the few galactose-specific legume lectins which does not bind N- acetylgalactosamine at all and is, therefore, ideal for the study of the basis of specificity towards C-2 substituted derivatives of galactopyranosides. Examination of the three-dimensional structure of PNA in complex with lactose revealed the presence of both a longer loop and bulkier residues in the region surrounding the C-2 hydroxyl of the galactopyranoside ring, which can sterically prevent the accommodation of a bulky substituent in this position. One such residue, is a glutamic acid at position 129 which protrudes into the binding site and perhaps directly obstructs any substitution at the C-2 position. Two mutants in bacterially expressed PNA were therefore constructed. These were E129D and E129A, in which Glu129 was replaced by Asp and Ala, respectively. The specificity of the mutants for galactose, galactosamine, and N- acetylgalactosamine was examined through observing the inhibition of hemagglutination and binding of the lectin to immobilized asialofetuin. The results showed that the affinity of E129A and E129D for C-2-substituted derivatives of the galactose varies. The mutant E129D showed significant binding towards N- acetylgalactosamine, suggesting that the residue Glu 129 is crucial in imparting exclusive galactose-specificity upon PNA. This study not only attempts to provide an explanation for the inability of PNA to accommodate C-2-substituted derivatives at its primary subsite, but also seeks to present a basis for engineering lectins with altered specificities.   相似文献   

17.
Eighteen site-selective cAMP analogs modified at either the C-8 position or the C-6 position were tested for their growth regulatory effects on the Harvey murine sarcoma virus-transformed NIH/3T3 clone 13-3B-4 cells grown in a serum-free defined medium. All 18 analogs, when tested individually, exhibited an appreciable growth inhibitory effect at micromolar concentrations. The most potent growth inhibitory analogs contained a thio moiety at the C-8 position. In general, C-6 analogs required 5-10-fold greater concentrations than C-8 analogs to produce the same degree of growth inhibition. The growth inhibition induced by these analogs was accompanied by a change in cell morphology; cells treated with the analogs exhibited the morphology characteristic of untransformed fibroblasts, while untreated cells retained a transformed phenotype. The regulatory subunit of cAMP-dependent protein kinase, the cAMP receptor protein, has two different intrachain cAMP binding sites, and cAMP analogs modified at the C-8 position (C-8 analogs) are generally selective for Site 1, while analogs modified at the C-6 position (C-6 analogs) are generally selective for Site 2. Thus, C-8 and C-6 analogs were tested in combination to enhance the growth regulatory effect. Both growth inhibition and morphological change were enhanced synergistically by a combination of the C-6 and C-8 analogs. Two C-6 analogs or two C-8 analogs added together did not cause synergism. For both growth inhibition and phenotypic change, C-8 thio analogs acted far more synergistically than C-8 amino analogs when cells were treated in combination with C-6 analogs, suggesting a response of the RII rather than the RI cAMP receptor protein. DEAE-cellulose chromatography revealed that the growth inhibition, in fact, correlates with an increase of the RII cAMP receptor protein and a decrease of the RI receptor protein. The growth inhibitory effect of the site-selective analogs was not due to the cytotoxic effect of adenosine metabolites as shown by the different behavior of 8-Cl-cAMP compared with 8-Cl-adenosine in 1) cell cycle effects and 2) release from growth inhibition. It is concluded that the observed growth inhibition and phenotypic reversion of 13-3B-4 cells is most likely mediated through the cellular effector, the RII cAMP receptor protein.  相似文献   

18.
C-6-carboxylated chitosan obtained by oxidation of chitosan was selectively modified in order to obtain derivatives similar to bacterial antigens. Selective O-acetylation of 6-carboxyl chitosan afforded a modified polysaccharide with the 2-amino group available for further modifications to create carbonyl groups. A deaminative degradation reaction allowed the formation of oligosaccharides with terminal aldehyde groups. Reductive alkylation with lactose introduced lactityl branches which were oxidized with galactose oxidase to give aldehyde groups in its -galactose residues.  相似文献   

19.
The kinetics and the metabolism of Bifidobacterium adolescentis MB 239 growing on galactooligosaccharides (GOS), lactose, galactose, and glucose were investigated. An unstructured unsegregated model for growth in batch cultures was developed, and kinetic parameters were calculated with a recursive algorithm. The growth rate and cellular yield were highest on galactose, followed by lactose and GOS, and were lowest on glucose. Lactate, acetate, and ethanol yields allowed the calculation of carbon fluxes toward fermentation products. Distributions between two- and three-carbon products were similar on all the carbohydrates (55 and 45%, respectively), but ethanol yields were different on glucose, GOS, lactose, and galactose, in decreasing order of production. Based on the stoichiometry of the fructose-6-phosphate shunt and on the carbon distribution among the products, the ATP yield was calculated. The highest yield was obtained on galactose, while the yields were 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondence among ethanol production, low ATP yields, and low biomass production was established, demonstrating that carbohydrate preferences may result from different distributions of carbon fluxes through the fermentative pathway. During the fermentation of a GOS mixture, substrate selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were the first to be consumed, while a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that beta(1-4) galactosides can be hydrolyzed before they are taken up.  相似文献   

20.
Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes   总被引:6,自引:0,他引:6  
The Fusarium mycotoxin, 4-deoxynivalenol, is an abundant, natural contaminant of corn and wheat. 8-Oxo-12,13-epoxytrichothecenes related to 4-deoxynivalenol were synthesized; they either lacked the 7-hydroxyl but contained a hydroxyl at C-4 (7-deoxynivalenol) or lacked substituents at C-3 and C-7 (3,7-dideoxynivalenol). The ability of these synthetic analogs and their acetylated derivatives to inhibit protein synthesis by cultured mammalian cells was compared to that of 4-deoxynivalenol. Whereas the 50% inhibitory dose (ID50) for murine erythroleukemia cells was about 1 microgram/ml for 4-deoxynivalenol and 3,7-dideoxynivalenol, all of the other analogs were at least 10-fold less potent. When tested at their ID50 dose, all of the 8-oxotrichothecenes, except 4-deoxynivalenol and 3,7-dideoxynivalenol, caused polysome 'run-off', indicating that, at this dose, they are inhibitors of polypeptide chain initiation. With 4-deoxynivalenol and 3,7-dideoxynivalenol, polysomes remained at control levels indicating that these toxins prevent polypeptide chain elongation. From these results and comparisons to previous studies of 8-oxo-12,13-epoxytrichothecenes (trichothecolone, trichothecin, nivalenol and fusarenone X), trichothecenes with substituents at both C-3 and C-4 predominantly inhibit polypeptide chain initiation, whereas those lacking one substituent at either site are inhibitors of chain elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号