首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Troxacitabine is a cytotoxic deoxycytidine analogue with an unnatural L-configuration, which is activated by deoxycytidine kinase (dCK). The configuration is responsible for differences in the uptake and metabolism of troxacitabine compared to other deoxynucleoside analogues. To determine whether troxacitabine has an advantage over other nucleoside analogues several cell lines resistant to cladribine and gemcitabine were exposed to troxacitabine, while blast cells from pediatric leukemia patients were tested for cross-resistance with other deoxynucleoside analogues. The gemcitabine resistant AG6000 (IC50: >3000 nM), and the cladribine resistant CEM (IC50: 150 nM) and HL-60 (IC50: >3000 nM) cell lines, all with no or decreased dCK expression, were less sensitive to troxacitabine than their wild type counterparts (IC50; A2780: 410, CEM: 71 and HL-60: 158 nM). dCK protein expression in CEM was higher than in HL-60, which, in turn, was higher than in A2780. Catalytically inactive p53 seems to increase the sensitivity to troxacitabine. The patient samples showed a large range of sensitivity to troxacitabine, similar to other deoxynucleoside analogues. Cross-resistance with all other deoxynucleoside analogues was observed.  相似文献   

3.
A murine hybridoma-derived monoclonal antibody, PM-81, was obtained from a fusion of cells of the NS-1 myeloma cell line with cells from a mouse immunized with the HL-60 promyelocytic leukemia cell line. This cytotoxic IgM monoclonal antibody was specific for myeloid cells. Employing indirect immunofluorescence and flow cytometry, we determined that this antibody reacts strongly with normal human granulocytes, eosinophils, and monocytes but not lymphocytes (including phytohemagglutinin-activated lymphocytes), null cells, red blood cells, or platelets. Moreover, the PM-81 antibody reacts with leukemia cells from 19 of 22 patients with acute myelocytic leukemia of all FAB subclasses, three of three patients with common acute lymphocytic leukemia, four of four patients with chronic myelocytic leukemia (CML) in myeloid blast crisis (terminal transferase (TdT)-negative) but did not react with cells from two patients with CML in lymphoid blast crisis (TdT-positive) or five patients with chronic lymphocytic leukemia. The myeloid cell lines HL-60, K562, KG-1, and U937 were all reactive with PM-81. The lymphoid lines CCRF-CEM and Daudi did not express PM-81 but HSB-2 was positive. The PM-81 antigen was absent on myeloid and erythroid progenitor cells as determined by their insusceptibility to complement-dependent lysis. In addition, only PM-81-unreactive cells were capable of colony formation. Furthermore, the PM-81 antibody does not appear to induce modulation of the antigen to which it binds. Thus, this monoclonal antibody appears to fulfill several criteria for clinical utility in the diagnosis and treatment of both acute myelocytic and acute lymphocytic leukemia.  相似文献   

4.
Summary Results of chromosome studies of blood and bone marrow cells from 101 patients with Ph1 positive chronic myeloid leukemia (CML) confirm the assumption that clinical and morphologic manifestations of the disease correlate with karyotype peculiarities of leukemic cells. Several variants of the clinical course of CML may be distinguished. One is the variant with a short chronic phase and a comparatively long terminal phase. In blastic crisis the blast cells are peroxidase negative and do not possess cytoplasmic inclusions. Acute transformation occurs without any additional chromosome damage. The second, more common form is less severe because of longer chronic phase but it has a short and grave acute stage. The blast cells present definite signs of myeloid differentiation, they have basophilic or neutrophilic cytoplasmic granules and are peroxidase positive. Marker i(17q) often combined with trisomy 8 is a characteristic chromosome abnormality in the terminal stage of this variant. The third type has an extremely long chronic phase but ends in a rapidly progressing severe and resistant to therapy lymphoid blastic crisis. Blast cells have typical lymphoid morphology, they are peroxidase negative and contain granular PAS positive substance. Various additional chromosome changes appear in the terminal stage. Future studies of a larger series of patients may possibly reveal more CML variants.  相似文献   

5.
The clinical efficacy of aclarubicin, an anthracycline antibiotic, was studied in 48 patients with leukemia. The antibiotic was used in the following combinations with cytarabine: "7 + 7", "5 + 5" and "7 & 3". A complete remission was stated in 14 (42.4 per cent) out of 33 patients with acute nonlymphoid leukemia, 6 (43 per cent) out of the 14 patients having relapses. The combined therapy was effective in 4 out of 5 pre-resistant patients. The "7 + 3" scheme was the most beneficial. The most common adverse reactions were nausea and vomiting.  相似文献   

6.
The presence of the common antigen on B lymphocytes of healthy donors and myeloblasts of patients with chronic myeloid leukemia in blastic crisis was observed with antimyeloblastic serum in the indirect surface immunofluorescence test. The cytotoxic test showed this antigen in the blastic cells in 27 out of 57 patients with CML BC, in 3 of 11 patients with acute lymphoid leukemia, in 1 of 8 patients with chronic lymphoid leukemia and in 2 of 2 patients with undifferentiated leukemia. The antigen was not found in the peripheral blood cells of healthy donors.  相似文献   

7.
Aberrant DNA methylation is known to occur in cancer, including hematological malignancies such as acute myeloid leukemia (AML). However, less is known about whether specific methylation profiles characterize specific subcategories of AML. We examined this issue by using comprehensive high-throughput array-based relative methylation analysis (CHARM) to compare methylation profiles among patients in different AML cytogenetic risk groups. We found distinct profiles in each group, with the high-risk group showing overall increased methylation compared with low- and mid-risk groups. The differentially methylated regions (DMRs) distinguishing cytogenetic risk groups of AML were enriched in the CpG island shores. Specific risk-group associated DMRs were located near genes previously known to play a role in AML or other malignancies, such as MN1, UHRF1, HOXB3, and HOXB4, as well as TRIM71, the function of which in cancer is not well characterized. These findings were verified by quantitative bisulfite pyrosequencing and by comparison with results available at the TCGA cancer genome browser. To explore the potential biological significance of the observed methylation changes, we correlated our findings with gene expression data available through the TCGA database. The results showed that decreased methylation at HOXB3 and HOXB4 was associated with increased gene expression of both HOXB genes specific to the mid-risk AML, while increased DNA methylation at DCC distinctive to the high-risk AML was associated with increased gene expression. Our results suggest that the differential impact of cytogenetic changes on AML prognosis may, in part, be mediated by changes in methylation.  相似文献   

8.
Acute myeloid leukemia (AML) is considered to be a disease of stem cells. A rare defective stem cell population is purported to drive tumor growth. Similarly to their normal counterparts, leukemic stem cells (LSC) divide extreme slowly. This may explain the ineffectiveness of conventional chemotherapy in combatting this disease. Novel treatment strategies aimed at disrupting the binding of LSC to stem cell niches within the bone marrow might render the LSC vulnerable to chemotherapy and thus improving treatment outcome. This review focuses on the detection of LSC, our current knowledge about their cellular and molecular biology, and LSC interaction with the niche. Finally, we discuss the clinical relevance of LSC and prospective targeted treatment strategies for patients with AML.  相似文献   

9.
Accumulating evidence support the notion that acute myeloid leukemia(AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells(LSC). Similar to their normal counterpart, hematopoietic stem cells(HSC), LSC possess selfrenewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normalHSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.  相似文献   

10.
The most popular view of hematopoietic cell lineage organization is that of complex reactive or adaptative systems. Leukemia contains a subpopulation of cells that display characteristics of stem cells. These cells maintain tumor growth. The properties of leukemia stem cells indicate that current conventional chemotherapy, directed against the bulk of the tumor, will not be effective. Leukemia stem cells are quiescent and do not respond to cell cycle-specific cytotoxic agents used to treat leukemia and thus contribute to treatment failure. New strategies are required that specifically target this malignant stem cell population.  相似文献   

11.
Chronic myeloid leukemia (CML) is considered as a paradigm of neoplasias developing through multistep track. It is believed that in the blast crisis (BC) terminal phase of the disease, blood-circulating blasts represent an expansion of a single CML clone. However, although these blasts grow mostly in suspension under standard culture conditions, a relatively small cell-fraction adheres to the plastic dish. Yet, it is unknown whether these two cell-fractions are distinct sub-populations that originated from a common CML clone and whether they have different biological and malignant properties. To address these questions, we have characterized the plastic-adherent and non-adherent sub-populations of various cell lines and primary cells derived from patients with CML in BC. This study indicated that the adherent-subsets retain repopulating ability with indications of increased malignant properties as greater anchorage-independent clonogenicity, impairment of cell-cell contact inhibition, loss of serum-dependent attenuation of plastic-adhesion, and a significant up-regulation of the oncogenes BCR-ABL, c-JUN, and c-FOS along with the adhesion-related genes KiSS-1, THBS3, and ITGB5. The adherent blasts stably retain their unique properties even after elimination of the adherence selection pressure. Sub-cloning analyses indicated that the adherent cells could be continuously evolved from any parental non-adherent clone in a unidirectional manner. This study provides new insights into the biology and the malignant evolution of CML, indicating that at the BC phase, circulating blasts are heterogeneous and consisting of at least two distinct populations of a common clonal origin. The existence of a minor "pool" of blasts of greater clonogenic capacity along with significantly higher expression level of BCR-ABL, individually or in conjunction with other cancer and adhesion-related genes, might also signify clonal evolution toward subsequent increased malignancy and lower therapeutic sensitivity.  相似文献   

12.
S A Guseva  L M Tishchenko 《Tsitologiia》1985,27(10):1203-1206
The increase in the expression of membrane receptors of monoblast cells to the Fc-fragment of immunoglobulins of classes IgG, IgA, IgM, to the C3-component of complement and FcH receptor in 8 patients with acute monoblastic leukemia and in 3 patients with acute myelomonoblastic leukemia, compared to results obtained for 11 patients with acute myeloblastic leukemia. Leukemic cells in the cases of acute myelomonoblastic and monoblastic leukemia maintained such properties of the phagocytosis (restoring Nitro-blue tetrazolium). Distinctions in degrees of expression of membrane receptors and functional activity of monoblastic and myeloblastic cells may be used as criteria of differential diagnosis of acute monoblastic and acute myeloblastic leukemia.  相似文献   

13.
14.
The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL) patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI). Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01). Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively). However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1) or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54 > CD29 > CD56 > CD18 > CD11b > CD11a. Immuno-phenotyping of plasma cells in PCL, as in multiple myeloma, might be useful in detecting minimal residual disease in cases with aberrant antigen expression and for selecting therapeutic agents towards specific membrane targets.  相似文献   

15.
Identification and characterization of leukemia-initiating cells (LICs) is important to understand leukemogenesis and develop novel therapies for leukemia. In this issue of Cell Stem Cell, Gibbs et?al. (2012) demonstrate that common active signaling pathways in LICs may be targeted to treat acute myeloid leukemia.  相似文献   

16.
Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARalpha and PLZF-RARalpha fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARalpha from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.  相似文献   

17.
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of myeloid precursors arrested in their maturation, creating a diverse disease entity with a wide range of responses to historically standard treatment approaches. While signifi cant progress has been made in characterizing and individualizing the disease at diagnosis to optimally inform those affected, progress in treatment to reduce relapse and induce remission has been limited thus far. In addition to a brief summary of the factors that shape prognostication at diagnosis, this review attempts to expand on the current therapies under investigation that have shown promise in treating AML, including hypomethylating agents, gemtuzumab ozogamicin, FLT3 tyrosine kinase inhibitors, antisense oligonucleotides, and other novel therapies, including aurora kinases, mTOR and PI3 kinase inhibitors, PIM kinase inhibitors, HDAC inhibitors, and IDH targeted therapies. With these, and undoubtedly many others in the future, it is the hope that by combining more accurate prognostication with more effective therapies, patients will begin to have a different, and more complete, outlook on their disease that allows for safer and more successful treatment strategies.  相似文献   

18.
The origin and evolution of mutations in acute myeloid leukemia   总被引:1,自引:0,他引:1  
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号