首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fluorescence correlation spectroscopy (FCS) is generally used to obtain information about the number of fluorescent particles in a small volume and the diffusion coefficient from the autocorrelation function of the fluorescence signal. Here we demonstrate that photon counting histogram (PCH) analysis constitutes a novel tool for extracting quantities from fluorescence fluctuation data, i.e., the measured photon counts per molecule and the average number of molecules within the observation volume. The photon counting histogram of fluorescence fluctuation experiments, in which few molecules are present in the excitation volume, exhibits a super-Poissonian behavior. The additional broadening of the PCH compared to a Poisson distribution is due to fluorescence intensity fluctuations. For diffusing particles these intensity fluctuations are caused by an inhomogeneous excitation profile and the fluctuations in the number of particles in the observation volume. The quantitative relationship between the detected photon counts and the fluorescence intensity reaching the detector is given by Mandel's formula. Based on this equation and considering the fluorescence intensity distribution in the two-photon excitation volume, a theoretical expression for the PCH as a function of the number of molecules in the excitation volume is derived. For a single molecular species two parameters are sufficient to characterize the histogram completely, namely the average number of molecules within the observation volume and the detected photon counts per molecule per sampling time epsilon. The PCH for multiple molecular species, on the other hand, is generated by successively convoluting the photon counting distribution of each species with the others. The influence of the excitation profile upon the photon counting statistics for two relevant point spread functions (PSFs), the three-dimensional Gaussian PSF conventionally employed in confocal detection and the square of the Gaussian-Lorentzian PSF for two photon excitation, is explicitly treated. Measured photon counting distributions obtained with a two-photon excitation source agree, within experimental error with the theoretical PCHs calculated for the square of a Gaussian-Lorentzian beam profile. We demonstrate and discuss the influence of the average number of particles within the observation volume and the detected photon counts per molecule per sampling interval upon the super-Poissonian character of the photon counting distribution.  相似文献   

2.
Nagy A  Wu J  Berland KM 《Biophysical journal》2005,89(3):2077-2090
Fluorescence fluctuation spectroscopy has become an important measurement tool for investigating molecular dynamics, molecular interactions, and chemical kinetics in biological systems. Although the basic theory of fluctuation spectroscopy is well established, it is not widely recognized that saturation of the fluorescence excitation can dramatically alter the size and profile of the fluorescence observation volume from which fluorescence fluctuations are measured, even at relatively modest excitation levels. A precise model for these changes is needed for accurate analysis and interpretation of fluctuation spectroscopy data. We here introduce a combined analytical and computational approach to characterize the observation volume under saturating conditions and demonstrate how the variation in the volume is important in two-photon fluorescence correlation spectroscopy. We introduce a simple approach for analysis of fluorescence correlation spectroscopy data that can fully account for the effects of saturation, and demonstrate its success for characterizing the observed changes in both the amplitude and relaxation timescale of measured correlation curves. We also discuss how a quantitative model for the observed phenomena may be of broader importance in fluorescence fluctuation spectroscopy.  相似文献   

3.
On the statistics of fluorescence correlation spectroscopy   总被引:3,自引:0,他引:3  
I present a detailed statistical analysis of fluorescence correlation spectroscopy (FCS) which is a natural extension of an early work. This analysis more realistically takes account of the following issues. (1) A spatial Gaussian laser excitation of fluorescence, (2) the effect of a small number of fluorescent molecules in the observation volume, (3) the shot noise effect due to random emission of fluorescent photons, and (4) a hyperbolic form for the fluorescence autocorrelation function obtained in the case of diffusion. Based on these assumptions, the results differ from the earlier work in several respects, in particular, the dependence of the signal-to-noise ratio on sample concentration and the understanding of shot noise in fluorescence fluctuation moments.  相似文献   

4.
Fluorescence fluctuation spectroscopy utilizes the signal fluctuations of single molecules for studying biological processes. Information about the biological system is extracted from the raw data by statistical methods such as used in fluctuation correlation spectroscopy or photon counting histogram (PCH) analysis. Since detectors are never ideal, it is crucial to understand the influence of photodetectors on signal statistics to correctly interpret the experimental data. Here we focus on the effects of afterpulsing and detector dead-time on PCH statistics. We determine the dead-time and afterpulse probability for our detectors experimentally and show that afterpulsing can be neglected for most experiments. Dead-time effects on the PCH are concentration-dependent and become significant when more than one molecule is present in the excitation volume. We develop a new PCH theory that includes dead-time effects and verify it experimentally. Additionally, we derive a simple analytical expression that accurately predicts the effect of dead-time on the molecular brightness. Corrections for non-ideal detector effects extend the useful concentration range of PCH experiments and are crucial for the interpretation of titration and dilution experiments.  相似文献   

5.
Metallic nanoparticles (NPs) are able to modify the excitation and emission rates (plasmonic enhancement) of fluorescent molecules in their close proximity. In this work, we measured the emission spectra of 20 nm Gold Nanoparticles (AuNPs) fixed on a glass surface submerged in a solution of different fluorophores using a spectral camera and 2-photon excitation. While on the glass surface, we observed the presence in the emission at least 3 components: i) second harmonic signal (SHG), ii) a broad emission from AuNPS and iii) fluorescence arising from fluorophores nearby. When on the glass surface, we found that the 3 spectral components have different relative intensities when the incident direction of linear polarization was changed indicating different physical origins for these components. Then we measured by fluctuation correlation spectroscopy (FCS) the scattering and fluorescence signal of the particles alone and in a solution of 100 nM EGFP using the spectral camera or measuring the scattering and fluorescence from the particles. We observed occasional fluorescence bursts when in the suspension we added fluorescent proteins. The spectrum of these burst was devoid of the SHG and of the broad emission in contrast to the signal collected from the gold nanoparticles on the glass surface. Instead we found that the spectrum during the burst corresponded closely to the spectrum of the fluorescent protein. An additional control was obtained by measuring the cross-correlation between the reflection from the particles and the fluorescence arising from EGFP both excited at 488 nm. We found a very weak cross-correlation between the AuNPs and the fluorescence confirming that the burst originate from a few particles with a fluorescence signal.  相似文献   

6.
Fluorescence correlation spectroscopy and quantitative cell biology   总被引:2,自引:0,他引:2  
Fluorescence correlation spectroscopy (FCS) analyzes fluctuations in fluorescence within a small observation volume. Autocorrelation analysis of FCS fluctuation data can be used to measure concentrations, diffusion properties, and kinetic constants for individual fluorescent molecules. Photon count histogram analysis of fluorescence fluctuation data can be used to study oligomerization of individual fluorescent molecules. If the FCS observation volume is positioned inside a living cell, these parameters can be measured in vivo. FCS can provide the requisite quantitative data for analysis of molecular interaction networks underlying complex cell biological processes.  相似文献   

7.
Recent advances in fluorescence correlation spectroscopy   总被引:7,自引:0,他引:7  
Fluorescence correlation spectroscopy is a method in which fluctuations in the fluorescence arising from a very small sample volume are correlated to obtain information about the processes giving rise to the fluctuations. Recent progress has been made in methodologies such as two-photon excitation, photon counting histogram analysis, cross-correlation, image correlation and evanescent excitation. Fluorescence correlation spectroscopy techniques have been applied to several biological processes, including fluorescent protein photodynamics, binding equilibria and kinetics, protein oligomerization, nucleic acid interactions, and membrane and intracellular dynamics.  相似文献   

8.
Fluorescence correlation spectroscopy (FCS) and photon-counting histogram (PCH) analysis use the same experimental fluorescence intensity fluctuations, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding, for instance, molecular diffusion coefficients. The amplitude distribution of these fluctuations is calculated by PCH analysis yielding information about the molecular brightness of fluorescent species. Analysis of both FCS and PCH results in the molecular concentration of the sample. Using a previously described global analysis procedure we report here precise, simultaneous measurements of diffusion constants and brightness values from single fluorescence fluctuation traces of green-fluorescent protein (GFP, S65T) in the cytoplasm of Dictyostelium cells. The use of a polynomial profile in PCH analysis, describing the detected three-dimensional shape of the confocal volume, enabled us to obtain well fitting results for GFP in cells. We could visualize the polynomial profile and show its deviation from a Gaussian profile.  相似文献   

9.
Single-molecule detection technologies are becoming a powerful readout format to support ultra-high-throughput screening. These methods are based on the analysis of fluorescence intensity fluctuations detected from a small confocal volume element. The fluctuating signal contains information about the mass and brightness of the different species in a mixture. The authors demonstrate a number of applications of fluorescence intensity distribution analysis (FIDA), which discriminates molecules by their specific brightness. Examples for assays based on brightness changes induced by quenching/dequenching of fluorescence, fluorescence energy transfer, and multiple-binding stoichiometry are given for important drug targets such as kinases and proteases. FIDA also provides a powerful method to extract correct biological data in the presence of compound fluorescence.  相似文献   

10.
11.
Fluorescence Correlation Spectroscopy Measures Molecular Transport in Cells   总被引:3,自引:0,他引:3  
Fluorescence correlation spectroscopy (FCS) can measure dynamics of fluorescent molecules in cells. FCS measures the fluctuations in the number of fluorescent molecules in a small volume illuminated by a thin beam of excitation light. These fluctuations are processed statistically to yield an autocorrelation function from which rates of diffusion, convection, chemical reaction, and other processes can be extracted. The advantages of this approach include the ability to measure the mobility of a very small number of molecules, even down to the single molecule level, over a wide range of rates in very small regions of a cell. In addition to rates of diffusion and convection, FCS also provides unique information about the local concentration, states of aggregation and molecular interaction using fluctuation amplitude and cross-correlation methods. Recent advances in technology have rendered these once difficult measurements accessible to routine use in cell biology and biochemistry. This review provides a summary of the FCS method and describes current areas in which the FCS approach is being extended beyond its original scope.  相似文献   

12.
Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores. In this work, we combine pulsed interleaved excitation with fluctuation imaging methods (PIE-FI) such as raster image correlation spectroscopy (RICS) or number and brightness analysis (N&B). More specifically, we show that quantitative measurements of diffusion and molecular brightness of Venus fluorescent protein (FP) can be performed in solution with PIE-RICS and compare PIE-RICS with single-point PIE-FCS measurements. We discuss the advantages of cross-talk free dual-color PIE-RICS and illustrate its proficiency by quantitatively comparing two commonly used FP pairs for dual-color microscopy, eGFP/mCherry and mVenus/mCherry. For N&B analysis, we implement dead-time correction to the PIE-FI data analysis to allow accurate molecular brightness determination with PIE-NB. We then use PIE-NB to investigate the effect of eGFP tandem oligomerization on the intracellular maturation efficiency of the fluorophore. Finally, we explore the possibilities of using the available fluorescence lifetime information in PIE-FI experiments. We perform lifetime-based weighting of confocal images, allowing us to quantitatively determine molecular concentrations from 100 nM down to <30 pM with PIE-raster lifetime image correlation spectroscopy (RLICS). We use the fluorescence lifetime information to perform a robust dual-color lifetime-based FRET analysis of tandem fluorescent protein dimers. Lastly, we investigate the use of dual-color RLICS to resolve codiffusing FRET species from non-FRET species in cells. The enhanced capabilities and quantitative results provided by PIE-FI make it a powerful method that is broadly applicable to a large number of interesting biophysical studies.  相似文献   

13.
Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores. In this work, we combine pulsed interleaved excitation with fluctuation imaging methods (PIE-FI) such as raster image correlation spectroscopy (RICS) or number and brightness analysis (N&B). More specifically, we show that quantitative measurements of diffusion and molecular brightness of Venus fluorescent protein (FP) can be performed in solution with PIE-RICS and compare PIE-RICS with single-point PIE-FCS measurements. We discuss the advantages of cross-talk free dual-color PIE-RICS and illustrate its proficiency by quantitatively comparing two commonly used FP pairs for dual-color microscopy, eGFP/mCherry and mVenus/mCherry. For N&B analysis, we implement dead-time correction to the PIE-FI data analysis to allow accurate molecular brightness determination with PIE-NB. We then use PIE-NB to investigate the effect of eGFP tandem oligomerization on the intracellular maturation efficiency of the fluorophore. Finally, we explore the possibilities of using the available fluorescence lifetime information in PIE-FI experiments. We perform lifetime-based weighting of confocal images, allowing us to quantitatively determine molecular concentrations from 100 nM down to <30 pM with PIE-raster lifetime image correlation spectroscopy (RLICS). We use the fluorescence lifetime information to perform a robust dual-color lifetime-based FRET analysis of tandem fluorescent protein dimers. Lastly, we investigate the use of dual-color RLICS to resolve codiffusing FRET species from non-FRET species in cells. The enhanced capabilities and quantitative results provided by PIE-FI make it a powerful method that is broadly applicable to a large number of interesting biophysical studies.  相似文献   

14.
Two-photon fluorescence excitation has been found to be a very powerful method for enhancing the sensitivity and resolution in far-field light microscopy. Two-photon fluorescence excitation also provides a substantially background-free detection on the single-molecule level. It allows direct monitoring of formation of labelled biomolecule complexes in solution. Two-photon excitation is created when, by focusing an intensive light source, the density of photons per unit volume and per unit time becomes high enough for two photons to be absorbed into the same chromophore. In this case, the absorbed energy is the sum of the energies of the two photons. In two-photon excitation, dye molecules are excited only when both photons are absorbed simultaneously. The probability of absorption of two photons is equal to the product of probability distributions of absorption of the single photons. The emission of two photons is thus a quadratic process with respect to illumination intensity. Thus in two-photon excitation, only the fluorescence that is formed in the clearly restricted three-dimensional vicinity of the focal point is excited. We have developed an assay concept that is able to distinguish optically between the signal emitted from a microparticle in the focal point of the laser beam, and the signal emitted from the surrounding free labelled reagent. Moreover, the free labels outside the focal volume do not contribute any significant signal. This means that the assay is separation-free. The method based on two-photon fluorescence excitation makes possible fast single-step and separation-free immunoassays, for example, for whole blood samples. Since the method allows a separation-free assay in very small volumes, the method is very useful for high-throughput screening assays. Consequently we believe that two-photon fluorescence excitation will make a remarkable impact as a research tool and a routine method in many fields of analysis.  相似文献   

15.
Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.  相似文献   

16.
We demonstrate that a novel high-pressure cell is suitable for fluorescence correlation spectroscopy (FCS). The pressure cell consists of a single fused silica microcapillary. The cylindrical shape of the capillary leads to refraction of the excitation light, which affects the point spread function of the system. We characterize the influence of these beam distortions by FCS and photon-counting histogram (PCH) analysis and identify the optimal position for fluorescence fluctuation experiments in the capillary. At this position within the capillary, FCS and photon-counting histogram experiments are described by the same equations as used in standard FCS experiments. We report the first experimental realization of fluorescence fluctuation spectroscopy under high pressure. A fluorescent dye was used as a model system for evaluating the properties of the capillary under pressure. The autocorrelation function and the photon count distribution were measured in the pressure range from 0 to 300 MPa. The fluctuation amplitude and the diffusion coefficient show a small pressure dependence. The changes of these parameters, which are on the order of 10%, are due to the pressure changes of the viscosity and the density of the aqueous medium.  相似文献   

17.
18.
荧光光谱分析法在地沟油鉴别中的应用研究   总被引:2,自引:0,他引:2  
由于地沟油的成分含量复杂性和不定量性,导致了现有的单一检测方法不能同时满足快速和准确的辨认。荧光光谱具有高灵敏度和分辨率的特性,由此提出了一种利用荧光光谱快速检测食用油中是否掺有地沟油的新方法。将花生油分成7组,每组油所含的地沟油的比例不同,用220 nm到800 nm的激发和发射光检测各组样品油,收集其荧光数据后做归一化处理进行分析。在荧光实验中,特别是在365 nm和720 nm激发波长波段和434 nm发射波长波段,样品油的荧光强度与所含地沟油的体积分数大小明显成反比,当地沟油的体积分数大于5%时,荧光强度的衰减更为明显。结果证明了荧光光谱法检测地沟油的可行性,而且步骤更为简单。利用荧光光谱的非接触和高灵敏度的优势,能够更为简便地检测到加入了5%以上地沟油的花生油。  相似文献   

19.
A general strategy to identify and quantify sample molecules in dilute solution employing a new spectroscopic method for data registration and specific burst analysis denoted as multi-parameter fluorescence detection (MFD) was recently developed. While keeping the experimental advantage of monitoring single molecules diffusing through the microscopic open volume element of a confocal epi-illuminated set-up as in experiments of fluorescence correlation spectroscopy, MFD uses pulsed excitation and time-correlated single-photon counting to simultaneously monitor the evolution of the four-dimensional fluorescence information (intensity, F; lifetime, tau; anisotropy, r; and spectral range, lambda(r)) in real time and allows for exclusion of extraneous events for subsequent analysis. In this review, the versatility of this technique in confocal fluorescence spectroscopy will be presented by identifying freely diffusing single dyes via their characteristic fluorescence properties in homogenous assays, resulting in significantly reduced misclassification probabilities. Major improvements in background suppression are demonstrated by time-gated autocorrelation analysis of fluorescence intensity traces extracted from MFD data. Finally, applications of MFD to real-time conformational dynamics studies of fluorescence labeled oligonucleotides will be presented.  相似文献   

20.
EB Brown  ES Wu  W Zipfel    WW Webb 《Biophysical journal》1999,77(5):2837-2849
Multiphoton fluorescence photobleaching recovery (MP-FPR) is a technique for measuring the three-dimensional (3D) mobility of fluorescent molecules with 3D spatial resolution of a few microns. A brief, intense flash of mode-locked laser light pulses excites fluorescent molecules via multiphoton excitation in an ellipsoidal focal volume and photobleaches a fraction. Because multiphoton excitation of fluorophores is intrinsically confined to the high-intensity focal volume of the illuminating beam, the bleached region is restricted to a known, three-dimensionally defined volume. Fluorescence in this focal volume is measured with multiphoton excitation, using the attenuated laser beam to measure fluorescence recovery as fresh unbleached dye diffuses in. The time course of the fluorescence recovery signal after photobleaching can be analyzed to determine the diffusion coefficient of the fluorescent species. The mathematical formulas used to fit MP-FPR recovery curves and the techniques needed to properly utilize them to acquire the diffusion coefficients of fluorescently labeled molecules within cells are presented here. MP-FPR is demonstrated on calcein in RBL-2H3 cells, using an anomalous subdiffusion model, as well as in aqueous solutions of wild-type green fluorescent protein, yielding a diffusion coefficient of 8.7 x 10(-7) cm(2)s(-1) in excellent agreement with the results of other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号