首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Kutsch  R. Heckmann 《Zoomorphology》1995,115(3):179-195
The neural supply of the dorsal lingitudinal muscles in successive segments from the prothorax to the pregenital abdomen of adult and larval instar locusts (Locusta migratoria and Schistocerca gregaria) has been studied. Stainings have also been carried out for embryos. The whole complement consists of three muscles, of which one or both of the smaller ones degenerate in the pterothoracic segments during early imaginal life. Based on morphological criteria, several motoneurone types can be distinguished. The neural set is almost identical for all segments, independent of the general organization of each segment. At about 65% of embryogenesis, all neurone types can be identified with respect to soma position and basic features of the central branching pattern. By the end of embryogenesis, a dendritic pattern is established which resembles the adult pattern in all major aspects. The reiteration of homonomous elements suggests that they form part of the basic segmental neural Bauplan generated early in embryogenesis. This study of muscles and motoneurones forming identifiable, reiterated neuromuscular units can serve as a segmental matrix for a comparative study comprising other phylogenetic groups of the Tracheata.Abbreviations DLM dorsal longitudinal muscle - DUM dorsal unpaired median - M muscle (number) - MN motoneurone - N nerve (number)  相似文献   

2.
To understand the segmental reiteration of an insect, the serially arranged neuromuscular system of the locust, Schistocerca gregaria, is studied. The ventral muscle system is chosen and its motoneuronal supply is described in the thoracic and pregenital segments. In general, repetitively arranged, similar sets of motoneurons (MNs) supply the ventral muscles of these segments. Common criteria of both topology of muscles and neural features (nerve branches and motoneuronal supply) suggest possible homonomies of the ventral longitudinal muscles and ventral diaphragm of the thoracic and abdominal system. Based on a segment-by-segment analysis, muscle topology and motor supply match, in most instances. There are, however, cases where such a parallelism is missing. In a particular cases the supply of apparently homonomous muscles shifts from one set of MNs to another. In another case, putatively equivalent MNs of different ganglia supply morphologically different muscle structures in the adult animal. Therefore, it becomes apparent that muscles and their supplying MNs are, in principle, independent elements which might be subjected autonomously to ontogenetic processes. As a consequence, in the search for the basic segmental Bauplan depending on homonomous structures, muscles and MNs have to be regarded as separate entities.Abbreviations A1–6 abdominal ganglion (or neuromere A1–3) - AS1–6 abdominal segment 1–6 - DUM doisal unpaired median - M muscle (number) - MN motoneuron - N nerve (number) - PMN paramedian nerve - T1–3 pro-, meso-, metathoracic ganglion - TS1–3 pro-, meso-, metathoracic segment - VD ventral diaphragm - VM ventral muscle  相似文献   

3.
The external morphology, musculature, and the innervation of the abdominal segments were examined in larvae and adult Tenebrio molitor. In the larva, there are 26 pairs of muscles arranged at four different levels in the ventral, lateral, and dorsal region of each segment. In the adult, the number of muscles has been dramatically reduced and is limited to six pairs of muscles located at the dorsal and lateral region of the segment. These muscles, in either larval or adult stages, are innervated by two main nerves, n1 and n2, which originate from the segmental ganglia. The cell bodies of the motoneurons innervating the muscles of the 3rd abdominal segment are located in the 3rd and 2nd abdominal ganglia. Some cell bodies are retained throughout metamorphosis, but others disappear during the larva-pupa transition.  相似文献   

4.
In electron microscopic study of structural organization of the thoracic ganglion of the locust larva of the 1st age (1–2 days after hatching), the data on the structure of motoneurons of the 1st nerve, basal and motor neuropil of the larva were obtained. The effector elements of the larval locust CNS are formed rather early and have the structural plan similar to that in adult insects. However, in the larval motoneurons innervating the flight muscles (longitudinal dorsal muscles, wing depressors) the clearly seen features of immaturity of these nervous elements are revealed. Study of the larval ganglion neuropil has shown that the basal neuropil is morphologically formed sufficiently completely as early as in larvae of the first days after hatching. There are shown longitudinal contacts between axons of the ventral neuropil zone, the presence of axons forming theen-passant contacts as well as the synapses with a heterogeneous set of vesicles in the presynaptic area. The presence of the great number of granular vesicles in the basal neuropil of the locust larva may indicate an important role of catecholamines in the early development of the nervous system in the locust larva.  相似文献   

5.
The anatomy and innervation of the lateral external muscle and sensory cells located in the ventral region of pregenital abdominal segments were examined at the larval and adult stages ofTenebrio molitor (Coleoptera). All seven muscles located in this region degenerate during the pupal stage, whilst only the lateral external median (lem) appears in the adult. Backfillings of the motor nerve innervating this muscle reveal that, at both larval and adult stages, it is innervated by ten neurons. Intracellular records from the muscle fibres show that two neurons are inhibitory, and at least five are excitatory. There are also two unpaired neurons. A variety of sensory organs are located in the ventral region of the larvae, whilst only campaniform sensilla are found in the adult. At both stages, the innervation pattern of the sensory nerve branches is very similar. Also, the central projections of the sensory cells occupy similar neuropilar areas. Finally, prolonged intracellular records from the lem muscle revealed that, at the larval stage, it participates only in segmental or intersegmental reflexes, whilst in the adult it has a primary expiratory role in ventilation. The results show that extensive changes occur in the number of muscles located in the ventral region of the pregenital abdominal segments, as well as in the arrangement and number of sensory neurons, in the structure of the exoskeleton, and even in the central nervous system. In contrast, only minor changes are observed in the sensory and motor nerve branches, in the sensory projections, and in the number and the location of the motoneurons innervating the lateral external median muscle. Correspondence to: G. Theophilidis  相似文献   

6.
 Whole-mount technique using fluorescent-labelled phalloidin for actin staining and confocal laser scanning microscopy as well as semi-thin serial sectioning, scanning and transmission electron microscopy were applied to investigate the ontogeny of the various muscular systems during larval development in the limpets Patella vulgata L. and P. caerulea L. In contrast to earlier studies, which described a single or two larval shell muscles, the pretorsional trochophore-like larva shows no less than four different muscle systems, namely the asymmetrical main head/foot larval retractor muscle, an accessory larval retractor with distinct insertion area, a circular prototroch/velar system, and a plexus-like pedal muscle system. In both Patella species only posttorsional larvae are able to retract into the shell and to close the aperture by means of the operculum. Shortly after torsion the two adult shell muscles originate independently in lateral positions, starting with two fine muscle fibres which insert at the operculum and laterally at the shell. During late larval development the main larval retractor and the accessory larval retractor become reduced and the velar muscle system is shed. In contrast, the paired adult shell muscles and the pedal muscle plexus increase in volume, and a new mantle musculature, the tentacular muscle system, and the buccal musculature arise. Because the adult shell muscles are entirely independent from the various larval muscular systems, several current hypotheses on the ontogeny and phylogeny of the early gastropod muscle system have to be reconsidered. Received: 23 June 1998 / Accepted: 25 November 1998  相似文献   

7.
Normal development in anurans includes a free swimming larva that goes through metamorphosis to develop into the adult frog. We have investigated cranial muscle development and adult cranial muscle morphology in three different anuran species. Xenopus laevis is obligate aquatic throughout lifetime, Rana (Lithobates) pipiens has an aquatic larvae and a terrestrial adult form, and Eleutherodactylus coqui has direct developing juveniles that hatch from eggs deposited on leaves (terrestrial). The adult morphology shows hardly any differences between the investigated species. Cranial muscle development of E. coqui shows many similarities and only few differences to the development of Rana (Lithobates) and Xenopus. The differences are missing muscles of the branchial arches (which disappear during metamorphosis of biphasic anurans) and a few heterochronic changes. The development of the mandibular arch (adductor mandibulae) and hyoid arch (depressor mandibulae) muscles is similar to that observed in Xenopus and Rana (Lithobates), although the first appearance of these muscles displays a midmetamorphic pattern in E. coqui. We show that the mix of characters observed in E. coqui indicates that the larval stage is not completely lost even without a free swimming larval stage. Cryptic metamorphosis is the process in which morphological changes in the larva/embryo take place that are not as obvious as in normal metamorphosing anurans with a clear biphasic lifestyle. During cryptic metamorphosis, a normal adult frog develops, indicating that the majority of developmental mechanisms towards the functional adult cranial muscles are preserved. J. Morphol. 275:398–413, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
In the hawkmoth, Manduca sexta, thoracic leg motoneurons survive the degeneration of the larval leg muscles to innervate new muscles of the adult legs. The same motoneurons, therefore, participate in the very different modes of terrestrial locomotion that are used by larvae (crawling) and adults (walking). Consequently, changes in locomotor behavior may reflect changes in both the CNS and periphery. The present study was undertaken to determine whether motor patterns produced by the isolated CNS of adult Manduca, in the absence of sensory feedback, would resemble adult specific patterns of coordination. Pilocarpine, which evokes a fictive crawling motor pattern from the isolated larval CNS, also evoked robust patterned activity from leg motoneurons in the isolated adult CNS. As in the larva, levator and depressor motoneurons innervating the same leg were active in antiphase. Unlike fictive crawling, however, bursts of activity in levator or depressor motoneurons of one leg alternated with bursts in the homologous motoneurons innervating the opposite leg of the same segment and the leg on the same side in the adjacent segment. The most common mode of intersegmental activity generated by the isolated adult CNS resembled an alternating tripod gait, which is displayed, albeit infrequently, during walking in intact adult Manduca. A detailed analysis revealed specific differences between the patterned motor activity that is evoked from the isolated adult CNS and activity patterns observed during walking in intact animals, perhaps indicating an important role for sensory feedback. Nevertheless, the basic similarity to adult walking and clear distinctions from the larval fictive crawling pattern suggest that changes within the CNS contribute to alterations in locomotor activity during metamorphosis. Electronic Publication  相似文献   

9.
Using various microscopical techniques, we have studied changes in the sensory equipment and architecture of the peripheral nervous system (PNS) around the first metamorphic molt from larva to pupa in the phantom midge Chaoborus. The transparent larvae and pupae of this dipteran with ancestral features allow us to investigate sensilla and their central projections from whole-mount preparations of complete groups of segments. Each sensillum on the posterior larval and pupal segments was identified using its external shape and position, and the morphology of the abdominal ganglia and segmental nerves was investigated. In addition, retrograde fills with the carbocyanine dye DiI were used to trace the axonal paths of most of the extero- and proprioreceptors. These findings were combined to produce maps of the sensory elements of larval and pupal abdomens that were analyzed at three levels: seriality (homonomy), ontogenetic changes of individual sensilla, and homology of the PNS between different species. Comparison of different segments shows for both stages that primarily there is a homonomous basic design of the PNS, but segment-specific modifications are evident in segments 8-10. Comparison of corresponding larval and pupal segments shows that many sensilla retain their internal structure and axonal projections. However, their external cuticular parts are changed in relation to the different life habits of larvae and pupae. Furthermore, some sensilla are completely reduced during the pupal molt, especially those of the tenth segment which appears as a distinct larval structure (caenogenesis). Comparison between species indicates that despite the varying types of sensilla their basic segmental arrangement and their axonal trajectories are conserved.  相似文献   

10.
Allometric growth is a common feature during fish larval development. It has been proposed as a growth strategy to prioritize the development of body segments related to primordial functions like feeding and swimming to increase the probability of survival during this critical period. In the present study we evaluated the allometric growth patterns of body segments associated to swimming and feeding during the larval stages of Pacific red snapper Lutjanus peru. The larvae were kept under intensive culture conditions and sampled every day from hatching until day 33 after hatching. Each larva was classified according to its developmental stage into yolk-sac larva, preflexion larva, flexion larva or postflexion larva, measured and the allometric growth coefficient of different body segments was evaluated using the potential model. Based on the results we can infer the presence of different ontogenetic priorities during the first developmental stages associated with vital functions like swimming during the yolk-sac stage [total length (TL) interval = 2.27–3.005 mm] and feeding during the preflexion stage (TL interval = 3.007–5.60 mm) by promoting the accelerated growth of tail (post anal) and head, respectively. In the flexion stage (TL interval = 5.61–7.62 mm) a change in growth coefficients of most body segments compared to the previous stage was detected, suggesting a shift in growth priorities. Finally, in the postflexion stage (TL interval = 7.60–15.48 mm) a clear tendency to isometry in most body segments was observed, suggesting that growth priorities have been fulfilled and the larvae will initiate with the transformation into a juvenile. These results provide a framework of the larval growth of L. peru in culture conditions which can be useful for comparative studies with other species or in aquaculture to evaluate the changes in larval growth due to new conditions or feeding protocols.  相似文献   

11.
To date only few comparative approaches tried to reconstruct the ontogeny of the musculature in invertebrates. This may be due to the difficulties involved in reconstructing three dimensionally arranged muscle systems by means of classical histological techniques combined with light or transmission electron microscopy. Within the scope of the present study we investigated the myogenesis of premetamorphic, metamorphic, and juvenile developmental stages of the anaspidean opisthobranch Aplysia californica using fluorescence F‐actin‐labeling in conjunction with modern confocal laser scanning microscopy. We categorized muscles with respect to their differentiation and degeneration and found three true larval muscles that differentiate during the embryonic and veliger phase and degenerate during or slightly after metamorphosis. These are the larval retractor, the accessory larval retractor, and the metapodial retractor muscle. While the pedal retractor muscle, some transversal mantle fibers and major portions of the cephalopedal musculature are continued and elaborated during juvenile and adult life, the buccal musculature and the anterior retractor muscle constitute juvenile/adult muscles which differentiate during or after metamorphosis. The metapodial retractor muscle has never been reported for any other gastropod taxon. Our findings indicate that the late veliger larva of A. californica shares some common traits with veligers of other gastropods, such as a larval retractor muscle. However, the postmetamorphic stages exhibit only few congruencies with other gastropod taxa investigated to date, which is probably due to common larval but different adult life styles within gastropods. Accordingly, this study provides further evidence for morphological plasticity in gastropod myogenesis and stresses the importance of ontogenetic approaches to understand adult conditions and life history patterns. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

12.
Recent interpretations of developmental gene expression patterns propose that the last common metazoan ancestor was segmented, although most animal phyla show no obvious signs of segmentation. Developmental studies of non-model system trochozoan taxa may shed light on this hypothesis by assessing possible cryptic segmentation patterns. In this paper, we present the first immunocytochemical data on the ontogeny of the nervous system and the musculature in the sipunculan Phascolion strombus. Myogenesis of the first anlagen of the body wall ring muscles occurs synchronously and not subsequently from anterior to posterior as in segmented spiralian taxa (i.e. annelids). The number of ring muscles remains constant during the initial stages of body axis elongation. In the anterior-posteriorly elongated larva, newly formed ring muscles originate along the entire body axis between existing myocytes, indicating that repeated muscle bands do not form from a posterior growth zone. During neurogenesis, the Phascolion larva expresses a non-metameric, paired, ventral nerve cord that fuses in the mid-body region in the late-stage elongated larva. Contrary to other trochozoans, Phascolion lacks any larval serotonergic structures. However, two to three FMRFamide-positive cells are found in the apical organ. In addition, late larvae show commissure-like neurones interconnecting the two ventral nerve cords, while early juveniles exhibit a third, medially placed FMRFamidergic ventral nerve. Although we did not find any indications for cryptic segmentation, certain neuro-developmental traits in Phascolion resemble the conditions found in polychaetes (including echiurans) and myzostomids and support a close relationship of Sipuncula and Annelida.  相似文献   

13.
This study analyzes the structure of the mandibular arch musculature in larval, metamorphic, and postmetamorphic anurans of 26 species and makes comparisons with larvae of three caudate and one gymnophione species. Major transformations in early evolution of anuran larvae comprise, for example, the powering of the larval upper jaw cartilages by relocating insertion sites of mandibular arch levators; splitting of some larval muscles into two muscles or muscle heads (m. intermandibularis, m. lev. mand. externus, m. lev. mand. longus); evolution of a muscle invading the lower lip of the oral disk (m. mandibulolabialis), and shift of origin of the internus and longus muscles from dorsal on the cranium to sites on the ventral otic capsule and palatoquadrate, respectively. In all these characters, Ascaphus truei shares the plesiomorphic conditions with caudates. The larva of Xenopus laevis is remarkable because the insertion pattern of three larval mandibular muscles anticipates the postmetamorphic condition of frogs in general and also resembles the caudate condition. Discoglossids, bombinatorids, pelobatids, and neobatrachians are largely similar in their muscle arrangements. The filter-feeding microhylids, however, have most clearly modified the general neobatrachian pattern. Past conflicts in the interpretation and naming of muscles can be attributed to the implicit or explicit homology assumptions used. In particular, the muscles' relations to the branches of the trigeminal nerve have been the dominant criteria for inferring homology and has led to inconsistencies. This concept is questioned herein. It is observed that the relative position of the ramus mandibularis (V(3)) is more variable interspecifically in anuran larvae than previously thought. The relations of the nerve branches and muscles in larvae are maintained during metamorphosis. Considering the muscle pattern to be more conserved in interspecific comparisons than the position of the nerve branches results in a new interpretation of muscle homologies and a hypothesis of jaw muscle evolution in amphibians that is more parsimonious than earlier views. A new, simplified terminology for the jaw musculature is proposed that is applicable for larvae and adults. It maximizes information content and reflects the hypothesized homologies of amphibian jaw muscles.  相似文献   

14.
H Steller  K F Fischbach  G M Rubin 《Cell》1987,50(7):1139-1153
Mutations at the X-linked disconnected locus of D. melanogaster lead to the failure of adult photoreceptor axons to innervate their target cells in the developing optic lobes of the third instar larva, resulting in flies that have rudimentary optic ganglia. The cascade of epigenetic events leading to the adult disconnected phenotype is caused by the misrouting of a larval pioneer nerve, Bolwig's nerve, during embryonic development. In the disconnected mutant this nerve fails to recognize and establish stable connections with its correct synaptic partners. In addition, disconnected affects both the proper aggregation and the movement of the Bolwig neurons to their final location in the embryo. Finally, similar but more subtle defects can be found in a subset of other peripheral neurons in the thoracic and abdominal segments. The different aspects of the phenotype suggest that the disconnected gene plays a role in neuronal cell recognition.  相似文献   

15.
The origin of the peripheral nerve and motor neurons that innervate the adult mesothoracic dorsal longitudinal muscles (DLMs) was examined in the silk moth, Bombyx mori . The anatomical features of the peripheral nerve and motor neurons were investigated by dissection, electron microscopy, and cobalt back-fill staining at different pupal stages. These studies showed that the peripheral nerve (IIN1c) that innervates the adult DLMs originates from a branch (db branch) of the larval mesothoracic dorsal nerve that innervates the larval DLMs. During metamorphosis the larval nerve shortens or lengthens locally without change in its basic branching pattern, and the db branch moves towards the mesothoracic ganglion to become the IIN1c. All the adult DLM motor neurons are from larval ones. Nine of the 14 larval DLM motor neurons survive during metamorphosis to become adult DLM motor neurons, and 5 disappear in early pupal stages.  相似文献   

16.
17.
Homeotic gene function in the muscles of Drosophila larvae   总被引:10,自引:6,他引:4       下载免费PDF全文
Hooper JE 《The EMBO journal》1986,5(9):2321-2329
The segmental musculature of Drosophila melanogaster larvae consists of 24-30 muscles per segment. Unique patterns of muscles are found in the three thoracic segments and the first and last abdominal segments; the remaining abdominal segments share the same pattern. Mutations in Ultrabithorax (Ubx) cause partial transformation of the muscle pattern of larval abdominal segments towards metathorax. The muscles of the thorax are not affected. In the first two abdominal segments the changes include the loss of at least 11 `abdominal' muscles and the gain of 11 `thoracic' muscles. Less extensive transformations are seen in more posterior abdominal segments. Anterobithorax, bithorax, postbithorax and bithoraxoid mutations also induce transformations of the larval musculature. Each allelic group affects a domain that is a subset of the entire Ubx domain but these domains are not restricted to compartments or segments and may extend through as many as five segments. In the muscles the segmental distribution of Ubx antigen correlates with the segments affected by Ubx mutations. The different domains of Ubx in mesoderm and ectoderm argue that the segmental diversity of the muscle pattern is not simply induced by the overlying epidermis and that Ubx function in the mesoderm is required for the correct development of abdominal segments.  相似文献   

18.
Summary The thoracic legs of the moth Manduca sexta acquire a new form and develop a new complement of sensory organs and muscles during metamorphosis from larva to adult. Because of our interest in the reorganization of neural circuitry and the acquisition of new behaviors during metamorphosis, we are characterizing sensory elements of larval and adult legs so that we may determine the contribution of new sensory inputs to the changes in behaviors. Here we describe the sensory structures of adult legs using scanning electron microscopy to view the external sensilla and cobalt staining to examine innervation by underlying sensory neurons. We find that, in contrast to larval legs, the adult legs are covered with a diverse array of sensilla. All three pairs of thoracic legs contain scattered, singly innervated scalelike sensilla. Campaniform sensilla occur singly or in clusters near joints. Hair plates, consisting of numerous singly innervated hairs, are also present near joints. Other more specialized sensilla occur on distal leg segments. These include singly innervated spines, two additional classes of singly innervated hairs, and three classes of multiply innervated sensilla. Internal sensory organs include chordotonal organs, subgenual organs, and multipolar joint receptors.  相似文献   

19.
The lateral and ventral external surfaces of the third and fourth abdominal segments were described and muscle attachments were correlated with surface indentations of the larva. The proleg of this species has a symmetrical planta with a complete circle of crochets. Furthermore, it differs externally from the grasping type of proleg in having a largely membranous coxal region confluent with the body wall, and a relatively large subcoxal lobe. The body wall musculature and innervation of the third and fourth abdominal segments are similar in many respects to those described for other lepidopteran larvae to which they are here compared, but differ from most because of the simpler structure of the prolegs which lack highly developed adductor muscles. Like most muscles innervated by the ventral nerve, the principal plantar retractors of these two segments cease to function in the first day of the pupal stage and have completely degenerated by the forty-fifth hour of pupal life. The ventral nerve retains its four primary branches in the adult, in which many smaller rami can be traced to the cuticle and to the neoblastic body wall muscles.  相似文献   

20.
Entire nervous systems of the dinophilids Dinophilus (two species) and Trilobodrilus (three species) and the dorvilleids Parapodrilus psammophilus and Ophryotrocha gracilis (larva) were stained with antisera directed against serotonin, Phe‐Met‐Arg‐Phe‐NH2 (FMRFamide) and acetylated α‐tubulin and analysed by confocal laser scanning microscopy (cLSM). Adult dinophilids and the dorvilleid larva exhibit the same structure of the ventral nerve cord, with two main nerves spaced far apart, one median and two paramedian nerves. A serotonergic plexus is situated between the paramedian nerve pair, above the ventral locomotory ciliary band. These similarities between adults and larva corroborate the presumed progenetic origin of dinophilids. However, since larval nervous systems of other polychaete taxa also seem to be organized in this way, this result cannot support the view that dinophilids originate from dorvilleids. In P.psammophilus the main nerve cords are widely separated only in the last segment, indicating that this pattern may be correlated with the absence of parapodia. The unpaired median nerve of dinophilids, P. psammophilus and many other polychaetes, is considered to be part of the basic annelid body plan. The ground pattern of the ventral paired dinophilid ganglia is represented by three (anterior, main, posterior) commissures, conserved in most of the ganglia in the Dinophilus species and mostly reduced to a main commissure in the Trilobodrilus species. The dinophilid species and P. psammophilus possess six pairs of ganglia indicating six trunk segments – in contrast to former views. The two rings behind the prostomium in both the dinophilid and the dorvilleid species contain one pair of ganglia only, corroborating the presumed homology of this peristomial region in the two taxa. The Dinophilus nervous system with 12 longitudinal nerves and three perpendicular nerve rings per segment resembles orthogonal nervous structures characteristic of platyhelminths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号