首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We quantitatively compare data obtained from imaging two-dimensional slices of three-dimensional unlabeled and fluorescently labeled collagen gels with confocal reflectance microscopy (CRM) and/or confocal fluorescence microscopy (CFM). Different network structures are obtained by assembling the gels over a range of concentrations at various temperatures. Comparison between CRM and CFM shows that the techniques are not equally sensitive to details of network structure, with CFM displaying higher fidelity in imaging fibers parallel to the optical axis. Comparison of CRM of plain and labeled collagen gels shows that labeling itself induces changes in gel structure, chiefly through inhibition of fibril bundling. Despite these differences, image analyses carried out on two-dimensional CFM and CRM slices of collagen gels reveal identical trends in structural parameters as a function of collagen concentration and gelation temperature. Fibril diameter approximated from either CRM or CFM is in good accord with that determined via electron microscopy. Two-dimensional CRM images are used to show that semiflexible polymer theory can relate network structural properties to elastic modulus successfully. For networks containing bundled fibrils, it is shown that average structural diameter, rather than fibril diameter, is the length scale that sets the magnitude of the gel elastic modulus.  相似文献   

2.
Turbidity, structure, and rheological features during gelation via the Ugi multicomponent condensation reaction of semidilute solutions of alginate have been investigated at different polymer and cross-linker concentrations and reaction temperatures. The gelation time of the system decreased with increasing polymer and cross-linker concentrations, and a temperature rise resulted in a faster gelation. At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional, variant omega(n)(')) and loss modulus (G' ' proportional, variant omega(n)(' ')) was observed for all gelling systems with n' = n' ' = n. By varying the cross-linker density at a fixed polymer concentration (2.2 wt %), the power law exponent is consistent with that predicted (0.7) from the percolation model. The value of n decreases with increasing polymer concentration, whereas higher temperatures give rise to higher values of n. The elastic properties of the gels continue to grow over a long time in the postgel region, and at later stages in the gelation process, a solidlike response is observed. The turbidity of the gelling system increases as the gel evolves, and this effect is more pronounced at higher cross-linker concentration. The small-angle neutron scattering results reveal large-scale inhomogeneities of the gels, and this effect is enhanced as the cross-linker density increases. The structural, turbidity, and rheological features were found to change over an extended time after the formation of the incipient gel. It was demonstrated that temperature, polymer, and cross-linker concentrations could be utilized to tune the physical properties of the Ugi gels such as structure, transparency, and viscoelasticity.  相似文献   

3.
The availability of mannuronan and mannuronan C-5 epimerases allows the production of a strictly alternating mannuronate-guluronate (MG) polymer and the MG-enrichment of natural alginates, providing a powerful tool for the analysis of the role of such sequences in the calcium-alginate gel network. In view of the calcium binding properties of long alternating sequences revealed by circular dichroism studies which leads eventually to the formation of stable hydrogels, their direct involvement in the gel network is here suggested. In particular, 1H NMR results obtained from a mixed alginate sample containing three polymeric species, G blocks, M blocks, and MG blocks, without chemical linkages between the block structures, indicate for the first time the formation of mixed junctions between G and MG blocks. This is supported by the analysis of the Young's modulus of hydrogels from natural and epimerized samples obtained at low calcium concentrations. Furthermore, the "zipping" of long alternating sequences in secondary MG/MG junctions is suggested to account for the shrinking (syneresis) of alginate gels in view of its dependence on the length of the MG blocks. As a consequence, a partial network collapse, macroscopically revealed by a decrease in the Young's modulus, occurred as the calcium concentration in the gel was increased. The effect of such "secondary" junctions on the viscoelastic properties of alginate gels was evaluated measuring their creep compliance under uniaxial compression. The experimental curves, fitted by a model composed of a Maxwell and a Voigt element in series, revealed an increase in the frictional forces between network chains with increasing length of the alternating sequences. This suggests the presence of an ion mediated mechanism preventing the shear of the gel.  相似文献   

4.
Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi.  相似文献   

5.
The effect of increasing water composition on the rheological and microstructural behavior of a ternary cellulose acetate (CA)/N,N-dimethylacetamide (DMA)/water system is examined. Addition of water to the CA/DMA system results in enhanced steady shear viscosity and dynamic viscoelastic properties and ultimately to phase-separated gel formation. The changes in dynamic rheological behavior of the system during gelation correlate well with the combined solubility parameter (delta) and, in particular, the Hansen hydrogen-bonding solubility parameter index (delta(h)) of the solvent system, suggesting hydrogen-bonding interactions may be the major route initiating the sol-gel process. For all gels studied, the elastic modulus and the critical stress to yield shifts to higher values with increasing CA concentration and/or water content. In addition, the elastic modulus exhibits a power-law behavior with water content, with the same power-law exponent observed for gels containing different CA concentrations. Addition of water leads to formation of a denser gel network, as evidenced from direct visualization of the gel microstructure through confocal microscopy.  相似文献   

6.
Whey protein gels prepared under acidic conditions (pH<4.6) remain largely unutilized because of their weak and brittle nature in contrast to the favorable elastic gels produced at neutral or basic conditions. However, such usage is important, as low pH food products are desirable due to their shelf stability and less stringent sterilization processes. In this study, we use a two-step process involving enzyme followed by heat treatment to produce whey protein gels at low pH (4.0). Dynamic rheological measurements reveal that the gel elastic modulus and yield stress increase substantially when heat treatment is supplemented with enzyme treatment. Both the elastic modulus and yield stress increase with increasing enzyme concentration or treatment time. In contrast, the dynamic yield strain decreases with enzyme concentration but increases with time of enzyme treatment. These results are explained in terms of the enzyme treatment time affecting the diffusion of the enzyme within the gel. This in turn leads to two types of gel microstructure at short and long enzyme treatment times, with the extent of enzyme diffusion modulating the structure at intermediate times.  相似文献   

7.
The effect of locust bean gum, a galactomannan, with different molecular weights on the microstructure and viscoelastic properties of heat-induced whey protein gels has been studied using confocal laser scanning microscopy and small-deformation rheology. The results obtained clearly showed that differences in the molecular weight of the polysaccharide have a significant influence on the gel microstructure. Homogeneous mixtures and phase-separated systems, with dispersed droplet and bicontinuous morphologies, were observed by changing the polysaccharide/protein ratio and/or the molecular weight. At 11% whey protein, below the gelation threshold of the protein alone, the presence of the nongelling polysaccharide induces gelation to occur. At higher protein concentration, the main effect of the polysaccharide was a re-enforcement of the gel. However, at the higher molecular weight and concentration of the nongelling polymer, the protein network starts to lose elastic perfection, probably due to the formation of bicontinuous structures with lower connectivity.  相似文献   

8.
The moduli of elasticity of calcium and lead alginate gels increase with time after preparation, and the temperature dependence of the rate of syneresis suggests an activation energy of 8?12 x 104 J.mol?1 for the formation of new junctions. At zero time, a negative temperature-dependence was found for the elastic force measured at a low degree of deformation (4%). Deformation of the gels was associated with an increase in entropy and internal energy. When the calcium ions in a preformed calcium alginate gel were exchanged for lead ions, which have a higher affinity for alginate, the modulus increased due to an enhanced increase in internal energy with deformation. Reversal of the sequence of introducing the two types of ions gave the opposite effect. The data suggest that the junctions are “weak points” in the gels, and that even small deformations can cause partial rupture.  相似文献   

9.
Differential scanning calorimetry and thermogravimetry in the solid state and dynamic mechanical measurements of gels have been carried out for agar-agars of Chilean and Argentinian origin in order to elucidate the rheological changes in the gel as a result of alkali pretreatment. The elastic modulus of the gel prepared from Chilean agar-agar increased with increasing sodium hydroxide concentration up to 10%, while that of Argentinian agar-agar increased with increasing sodium hydroxide concentration up to 7%, and then began to decrease at higher concentrations. The increase in elastic modulus has been attributed to the structural stabilisation induced by the formation of 3,6-anhydro-l-galactose, while the decrease in elastic modulus in Argentinian agar-agar has been ascribed to chain breakage.  相似文献   

10.
The effects of glycerin and ethylene glycol on the elastic modulus and DSC thermograms of agarose and kappa-carrageenan gels were examined to clarify the relation between structure and properties. The elastic modulus of these gels as a function of the concentration of polyols increased up to a certain concentration and then decreased with increasing concentration of polyols. These polyols shifted the melting temperature of the gel to higher temperatures in kappa-carrageenan gels but to lower temperatures in agarose gels. The temperature dependence of elastic modulus was changed in opposite directions in agarose and kappa-carrageenan gels by the addition of polyols, and this is discussed on the basis of model consisting of junction zones which are connected by Langevin chains. It was suggested that the mean distance between junction zones became shorter in the presence of a small amount of polyols.  相似文献   

11.
The gelation and melting behavior of 1∶1, 1∶3 xanthan-carob mixed gels were evaluated at isothermal and non-isothermal states, as a function of total polymer concentrations of 0.1, 0.5 and 1%. A thermal hysteresis was observed between gelation and melting. The higher the polymer concentration, the higher the melting temperature. The gelation points were determined by three criteria. Depending on the criterion used the gelation temperature was different (52 to 70°C). Pseudoequilibrium modulus and elastic active network chain (EANC) concentration were calculated from the plateau modulus in the frequency spectrum. Temperature dependence of the monomeric friction coefficient was estimated from the relaxation time and EANC. Time-temperature superposition theory was not applicable due to dramatic phase transitions occurring during the gelation of X/C mixture.  相似文献   

12.
Ionic and acid gel formation of epimerised alginates; the effect of AlgE4   总被引:1,自引:0,他引:1  
AlgE4 is a mannuronan C5 epimerase converting homopolymeric sequences of mannuronate residues in alginates into mannuronate/guluronate alternating sequences. Treating alginates of different biological origin with AlgE4 resulted in different amounts of alternating sequences. Both ionically cross-linked alginate gels as well as alginic acid gels were prepared from the epimerised alginates. Gelling kinetics and gel equilibrium properties were recorded and compared to results obtained with the original non-epimerised alginates. An observed reduced elasticity of the alginic acid gels following epimerisation by AlgE4 seems to be explained by the generally increased acid solubility of the alternating sequences. Ionically (Ca(2+)) cross-linked gels made from epimerised alginates expressed a higher degree of syneresis compared to the native samples. An increase in the modulus of elasticity was observed in calcium saturated (diffusion set) gels whereas calcium limited, internally set alginate gels showed no change in elasticity. An increase in the sol-gel transitional rate of gels made from epimerised alginates was also observed. These results suggest an increased possibility of creating new junction zones in the epimerised alginate gel due to the increased mobility in the alginate chain segments caused by the less extended alternating sequences.  相似文献   

13.
The viscoelastic properties in actin solutions were investigated by measuring their elastic modulus and viscous modulus using a rheometer. The polymerization/gelation process of actin solutions was accompanied by an increase of both parameters, indicating the formation of a protein network. High shear rotational motion destroyed this network which, however, would reanneal if left undisturbed. At 25 °C under low ionic strength conditions, the viscoelastic moduli of a Spudich-Watt globular (G) actin preparation increased with time, while G-actin, purified by gel filtration maintained low viscoelastic moduli. The rigidity of the filamentous (F) actin network in a solution of Spudich-Watt actin, measured by the elastic modulus, was somewhat lower than that of gel-filtration-purified actin at the same protein concentration. The crosslink density of these F-actin networks was estimated, using models from rubber elasticity theory. The calculated density was 1 crosslink/50 actin monomers for the purified actin and 1 crosslink/120 actin monomers for Spudich-Watt actin. The results are consistent with the idea that a small amount of regulatory factor(s), which could be removed by the gel filtration step, modulates the structure of an actin network.  相似文献   

14.
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.  相似文献   

15.
Dynamic oscillatory testing has been used to study the rheology of water-insoluble dextran. The rheological properties (storage and loss moduli) of dextran gel were measured and dextran was found to be neither a strong gel nor a weak gel, but an entanglement network at a concentration of 250 mg/ml. The extent of gelation, illustrated by the gel elastic modulus G′, is found to decrease with increasing concentration of calcium ions. This was confirmed by shift of crossover frequencies towards higher values on the dynamic spectra and lower yield stress τ values obtained from stress ramp experiments. Finally, a comparison between gelation of dextran and alginate (a similar biopolymer) was made for clear understanding of effect of calcium ions on the dextran gelation.  相似文献   

16.
Amylose fractions were prepared by aqueous leaching from pea, maize and patato starch granules. The fractions were characterised by iodine binding, β-amylolysis and viscometry. Amylose starts to form a gel rather than a precipitate on cooling aqueous solutions to room temperature at concentrations above the coil overlap concentration C1. Amylose gels are almost purely elastic, with negligible viscous flow at room temperature. The rigidity modulus is strongly dependent on concentration, c, in that above 1·5% w/w the modulus increases as a function of c7. The modulus of a matured gel falls only slightly with increasing temperature; at temperatures below 100°C the gel could not be melted. The non-equilibrium nature of the system is shown by the dependence of rigidity on thermal history. The shear modulus is also dependent on amylose type; higher molecular weight amylose fractions produced less rigid gels at a given concentration.  相似文献   

17.
Mixed gels of κ-carrageenan (κ-car) from Hypnea musciformis and galactomannans (Gal) from Cassia javanica (CJ) and locust bean gum (LBG) were compared using dynamic viscoelastic measurements and compression tests. Mixed gels at 5 g/l of total polymer concentration in 0.1 M KCl showed a synergistic maximum in viscoelastic measurements for κ-car/CJ and κ-car/LBG at 2:1 and 4:1 ratios, respectively. The synergistic maximum obtained from compression tests carried out for mixed gels at 10 g/l of total polymer concentration in 0.25 M KCl was the same for both κ-car/CJ and κ-car/LBG gels. An enhancement in the storage modulus (G′) and the loss modulus (G″) was observed in the mechanical spectra for the mixtures in relation to κ-car. The proportionally higher increase in G″ compared with G′, as indicated by the values of the loss tangent (tan δ), suggests that the Gal adhere non-specifically to the κ-car network.  相似文献   

18.
Cold-set whey protein (WP) gels with addition of xanthan or guar were evaluated by mechanical properties and scanning electron microscopy. Gels were formed after the addition of different amounts of glucono-δ-lactone to thermally denatured WP solutions, leading to different acidification rates and final pH values. At lower acidification rates and higher final pH, gels showed more discontinuous structure and weaker and less elastic network, which was attributed to a predominance of phase separation during gel formation due to slower gelation kinetics. In contrast, at higher acidification rates and lower final pHs, gelation prevailed over phase separation, favoring the formation of less porous structures, resulting in stronger and more elastic gels. The gels’ fractal dimension (D f; structure complexity) and lacunarity were also influenced by the simultaneous effects of gelation and phase separation. For systems where phase separation was the prevailing mechanism, greater lacunarity parameters were usually observed, describing the heterogeneity of pore distribution, while the opposite occurred at prevailing gelation conditions. Increase in guar concentration or lower final pH of xanthan gels entailed in D f reduction, while the increase in xanthan concentration resulted in higher D f. Such a result suggests that the network contour length was rugged, but this pattern was reduced by the increase of electrostatic interactions among WP and xanthan. Guar addition caused the formation of gel network with smoother surfaces, which could be attributed to the guar–protein excluded volume effects leading to an increase in protein–protein interactions.  相似文献   

19.
The elasticity of spectrin-actin gels at high protein concentration   总被引:1,自引:0,他引:1  
Human erythrocyte spectrin of high purity was studied alone and mixed with rabbit skeletal actin by dynamic rheometry as a function of protein concentration at pH 7.4 and 24 degrees C. Pure spectrin had a very low storage modulus, G', increasing slightly with increase in protein concentration (approximately 3 dynes/cm at 25 mg/ml). In contrast, unpurified cytoskeletal extracts containing spectrin, actin, and band 4.1 showed a marked concentration dependence for G', increasing to 150 dynes/cm at 20 mg/ml. Mixtures of purified spectrin and skeletal actin at a weight ratio of 4:1 also showed G' markedly dependent on concentration (approximately 150-200 dynes/cm at 20 mg/ml). Maximum elasticity of spectrin-actin gels occurred at a molar ratio of actin monomers to spectrin tetramers of 14:1. We conclude that the reconstituted in vitro spectrin-actin network consists of actin fibers cross-linked by spectrin tetramers at regular intervals. The gel is rapidly reformed after mechanical disruption or thermal collapse, indicating that the polymer fibers are in equilibrium with the constituent monomers.  相似文献   

20.
The effect of immersion into salt solutions on rheological properties of gellan gels was investigated. The storage Young's modulus of gellan gels increased with time during the immersion into salt solutions. The increase of the storage Young's modulus can not be explained solely by change in the concentration of gellan. The ellipticity at 202 nm decreased by the immersion, suggesting the formation and aggregation of gellan helices. It was considered that during immersion cations penetrated into gellan gels to induce the formation and aggregation of gellan helices in gels, resulting in reinforcement of the gel network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号