首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated the effect of the A-IV-2 allele, which encodes a Q360H substitution in apolipoprotein (apo) A-IV, and dietary fat on cholesterol absorption in humans. In three separate studies we compared fractional intestinal cholesterol absorption between groups of subjects heterozygous for the A-IV-2 allele (1/2) and homozygous for the common allele (1/1) receiving high cholesterol ( approximately 800 mg/day) diets with different fatty acid compositions. All subjects had the apoE 3/3 genotype. There was no difference in cholesterol absorption between the two genotype groups receiving a high saturated fat diet (33% of total energy as fat; 18% saturated, 3% polyunsaturated, 12% monounsaturated) or a low fat diet (22% of total energy as fat; 7% saturated, 7% polyunsaturated, 8% monounsaturated) diet. However, on a high polyunsaturated fat diet (32% of total energy as fat; 7% saturated, 13% polyunsaturated, 12% monounsaturated) mean fractional cholesterol absorption was 56. 7% +/- 1.9 in 1/1 subjects versus 47.5% +/- 2.1 in 1/2 subjects (P = 0.004). A post hoc analysis of the effect of the apoA-IV T347S polymorphism across all diets revealed a Q360H x T347S interaction on cholesterol absorption, and suggested that the A-IV-2 allele lowers cholesterol only in subjects with the 347 T/T genotype.We conclude that a complex interaction between apoA-IV genotype and dietary fatty acid composition modulates fractional intestinal cholesterol absorption in humans.  相似文献   

3.
4.
Recent studies have demonstrated that the shape of the human temporal bone is particularly strongly correlated with neutral genetic expectation, when compared against other cranial regions, such as the vault, face, and basicranium. In turn, this has led to suggestions that the temporal bone is particularly reliable in analyses of primate phylogeny and human population history. While several reasons have been suggested to explain the temporal bone's strong fit with neutral expectation, the temporal bone has never systematically been compared against other individual cranial bones defined using the same biological criteria. Therefore, it is currently unknown whether the shapes of all cranial bones possess reliable information regarding neutral genetic evolution, or whether the temporal bone is unique in this respect. This study tests the hypothesis that the human temporal bone is more congruent with neutral expectation than six other individual cranial bones by correlating population affinity matrices generated using neutral genetic and 3D craniometric data. The results demonstrate that while the temporal bone shows the absolute strongest correlation with neutral genetic data compared with all other bones, it is not statistically differentiated from the sphenoid, frontal, and parietal bones in this regard. Potential reasons for the temporal bone's consistently strong fit with neutral expectation, such as its overall anatomical complexity and/or its contribution to the architecture of the basicranium, are examined. The results suggest that future phylogenetic and taxonomic studies would benefit from considering the shape of the entire cranium minus those regions that deviate most from neutrality. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
When using (13)C tracer to measure plasma fat oxidation, an acetate recovery factor should be determined in every subject to correct for label sequestration. Less is known regarding the acetate recovery factor for dietary fatty acid oxidation. We compiled data from six studies to investigate the determinants of the dietary acetate recovery factor (dARF) at rest and after physical activity interventions and compared the effects of different methods of dARF calculation on both the fat oxidation and its variability. In healthy lean subjects, dARF was 50.6 +/- 5.4% dose (n = 56) with an interindividual coefficient of variation of 10.6% at rest and 9.2% after physical activity modifications. The physical activity interventions did not impact dARF, and the intraindividual coefficient of variation was 4.6%. No major anthropological or physiological determinants were detected except for resting metabolic rate, which explains 7.4% of the dARF variability. Applying an individual or an average group dARF did not affect the mean and the variability of the derived dietary lipid oxidation at rest or after physical activity interventions. Using a mean dARF for a group leads to over- or underestimation of fat oxidation of less than 10% in individual subjects. Moreover, the use of a group or individual correction did not affect the significant relationship found between fasting respiratory exchange ratio and dietary fat oxidation. These data indicate that an average dARF can be applied for longitudinal and cross-sectional studies investigating dietary lipid metabolism.  相似文献   

7.
Dietary intervention is the first and usually successful approach in the treatment of high LDL cholesterol (LDL-C) concentration, but it is frequently accompanied by a decrease in HDL concentration. We studied 14 male volunteers on two different diets, high saturated fatty acid (SFA) and high PUFA, in a crossover design to test whether a decrease in HDL can affect reverse cholesterol transport from relabeled macrophages. A significant decrease of LDL-C (in mmol/l) after a PUFA diet compared with an SFA diet from 3.15 +/- 0.65 to 2.80 +/- 0.56 (P < 0.01) was accompanied by a significant decrease of HDL cholesterol (HDL-C) (in mmol/l) from 1.21 +/- 0.30 to 1.10 +/- 0.32 (P < 0.05). These changes did not affect cholesterol efflux (CHE) from macrophages (9.74 +/- 1.46% vs. 9.53 +/- 1.41%). There was no correlation between individual changes of HDL-C and changes of CHE. It is concluded that the decrease of HDL-C after successful dietary intervention of LDL-C is not accompanied by a decrease of CHE.  相似文献   

8.
Plasma VLDL and LDL cholesterol were markedly elevated (>40-fold) in high-responding opossums, but moderately elevated (6-fold) in low-responding opossums after they had consumed a high-cholesterol and high-fat diet for 24 wk. In both high- and low-responding opossums, plasma triglycerides were slightly elevated, threefold and twofold, respectively. Dietary challenge also induced fatty livers in high responders, but not in low responders. We studied the lipid composition, histopathological features, and gene expression patterns of the fatty livers. Free cholesterol (2-fold), esterified cholesterol (11-fold), and triglycerides (2-fold) were higher in the livers of high responders than those in low responders, whereas free fatty acid levels were similar. The fatty livers of high responders showed extensive lobular disarray by histology. Inflammatory cells and ballooned hepatocytes were also present, as were perisinusoidal fibrosis and ductular proliferation. In contrast, liver histology was normal in low responders. Hepatic gene expression revealed differences associated with the development of steatohepatitis in high responders. The accumulation of hepatic cholesterol was concomitant with upregulation of the HMGCR gene and downregulation of the CYP27A1, ABCG8, and ABCB4 genes. Genes involved in inflammation (TNF, NFKB1, and COX2) and in oxidative stress (CYBA and NCF1) were upregulated. Upregulation of the growth factor genes (PDGF and TGFB1) and collagen genes (Col1A1, Col3A1, and Col4A1) was consistent with fibrosis. Some of the histological characteristics of the fatty livers of high-responding opossums imitate those in the livers of humans with nonalcoholic steatohepatitis.  相似文献   

9.
The response of parameters of plasma cholesterol metabolism was studied in baboons adapted either to a low-fat, low-cholesterol diet or a high-fat, high-cholesterol diet. Animals adapted to the low-fat diet responded to a single low-fat or high-fat meal, as do normal humans, by a stimulation of cholesterol transport from blood cells to plasma, a stimulation of esterification of cholesterol, and a stimulation of cholesteryl ester transfer to very low and low density lipoproteins. While fasting rates of esterification and transfer increased as a result of diet-induced hypercholesterolemia, the postprandial response was reversed, so that postprandial metabolism was characterized by a movement of cholesterol from plasma to blood cells, an inhibition of cholesterol esterification, and a net transfer of cholesteryl esters from VLDL and LDL to HDL. These data indicate that the effects of postprandial lipemia on plasma cholesterol metabolism critically depend upon fasting plasma cholesterol levels.  相似文献   

10.
11.
12.
13.
14.
We measured the interactive effects of dietary cholesterol and fat on the regulation of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) activity and its relationship to hepatic microsomal lipid composition in guinea pigs fed 15 g/100 g (w/w) fat diets (corn oil, olive oil, or lard) with 0.01, 0.08, 0.17, or 0.33 g/100 g (w/w) added cholesterol. Guinea pigs exhibited a dose dependent increase in hepatic microsomal ACAT activity, with increasing levels of cholesterol intake (P < 0.001) in all dietary fat groups. Animals fed monounsaturated olive oil had the highest hepatic ACAT activity with the exception of the 0.33 g/100 g cholesterol diet (P < 0.001). There were no differences in ACAT activity with intake of polyunsaturated corn oil or saturated lard. Dietary cholesterol resulted in increased microsomal free cholesterol (FC) concentrations in a dose dependent manner but had no effects on microsomal phosphatidylcholine (PC) concentrations. Guinea pigs fed olive oil generally had the highest microsomal FC/PC molar ratios, and hepatic ACAT activities correlated significantly with this parameter. After modification of the lipid compositions of the microsomes from guinea pigs fed the 12 test diets with FC/PC liposome treatment, microsomal ACAT activities remained significantly related to the microsomal FC/PC molar ratios, and dietary fat type did not affect this correlation. Our findings do not support the hypothesis that the stimulation of hepatic ACAT activity with cholesterol intake is enhanced by polyunsaturated fat intake. The data demonstrate that although dietary fat type and cholesterol amount have differential effects on hepatic ACAT activity, substrate availability, expressed as microsomal FC/PC molar ratio, is a major regulator of hepatic microsomal ACAT activity.  相似文献   

15.
16.
The effect of dietary fats differing in fatty acid (FA) composition on the metabolism of saturated FA (SFA) and monounsaturated FA (MUFA) in growing pigs was investigated. The deposition of FA in the body and the fate of individual dietary FA were assessed after slaughter. Gilts with an initial body weight (BW) of 60 kg were used as experimental animals. Six pigs were slaughtered at 60 kg BW, while further 18 pigs received three isoenergetic and isonitrogen experimental diets containing linseed oil, rapeseed oil or beef tallow at 50 g/kg diet until they reached 105 kg (six pigs per group). The chemical composition and the content of FA in the whole body were determined and compared across groups. Regardless of dietary treatment, the whole body contained similar amounts of protein, fat and total FA. The total accumulation (percentage of net intake and de novo production) of SFA and MUFA was similar in all groups, but the processes of elongation and desaturation of SFA and MUFA depended upon the type of FA added to the diet. A high dietary content and intake of MUFA inhibits desaturation compared to SFA- and PUFA-rich diets, whereas a high SFA content and intake lowers elongation rate. The increasing net intake of total SFA and MUFA was associated with a lower total de novo production of these FA in the whole body of pigs.  相似文献   

17.
《Small Ruminant Research》2000,35(2):141-147
Adult, non-pregnant, dry goats were fed diets differing in the amount and type of fat. To modulate the type of dietary fat, rations containing either palm oil or olive oil were used, the amount of fat being 86 g/kg dry matter (DM). To modulate the amount of dietary fat, the oils were replaced by an isoenergetic amount of native corn starch so that the dietary fat concentration dropped to 26 g/kg DM. The high fat diets, when compared with the low fat diet, significantly raised plasma total cholesterol by 91%, high-density lipoprotein (HDL) cholesterol by 100%, triglycerides by 47% and phospholipids by 57%. On an average, dietary palm oil versus olive oil significantly increased plasma total cholesterol by 6%, HDL cholesterol by 9% and phospholipids by 4%, but left plasma triglycerides unchanged. This study shows that plasma lipid concentrations in goats respond to the amount and type of fat in the diet.  相似文献   

18.
Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.  相似文献   

19.
The effects of saturated and polyunsaturated dietary fat on the lipolytic activity of post-heparin plasma, lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were studied in the rat. The lipolytic activity was studied from 0 to 60 min using labelled chylomicrons as the substrate. Triacylglycerol hydrolysis rate was higher for the plasma of rats fed high fat diets (14% fat by weight). Chylomicrons of rats fed saturated or unsaturated fats were hydrolyzed at the same rate within the first 15 min but afterwards hydrolysis of chylomicrons of rats fed saturated fat was slower. The activities of LPL and HTGL were increased by high fat diets. Unsaturated fat increased more LPL activity than saturated fat conversely, HTGL activity was enhanced more by saturated fat than by unsaturated fat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号