首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
1. Spatial variation of methane (CH4) efflux from the littoral zone of a meso‐eutrophic boreal lake was studied with a closed‐chamber technique for three summer days in 22 vegetation stands, consisting of three emergent and three floating‐leaved species. 2. Between‐species differences in CH4 emission were significant. The highest emissions were measured from the emergent Phragmites australis stands (0.5–1.7 mmol m?2 h?1), followed by Schoenoplectus lacustris > Equisetum fluviatile > Nuphar lutea > Sparganium gramineum > Potamogeton natans. Within‐species differences between stands were not significant. 3. In P. australis stands, the stand‐specific mean CH4 emission was significantly correlated with solar radiation, probably indicating the role of effective pressurised ventilation on CH4 fluxes. The proportion of net primary production emitted as CH4 was significantly higher in P. australis stands (7.4%) than in stands of S. lacustris and E. fluviatile (both 0.5%). 4. In N. lutea stands, CH4 efflux was negatively correlated with the mean fetch and positively with the percentage cover of leaves on the water surface. There were no differences in CH4 efflux between intact N. lutea leaves and those grazed by coleopteran Galerucella nymphaeae. In S. graminaeum and P. natans stands, CH4 effluxes were not related to any of the measured environmental variables. 5. For all vegetation stands, the biomass above water level explained about 60% of the observed spatial variation in CH4 emission, indicating the important role of plants as gas conduits and producers of substrates for methanogens in the anoxic sediment.  相似文献   

2.
Methane emission and rhizospheric CH4 oxidation were studied in stands of Equisetum fluviatile, a common cryptogam in boreal lakes. The experiment was performed in mesocosms with organic sediment or sand bottoms under natural variation of temperature and light using the light-oxic – dark-anoxic chamber (LO/DA) technique. Net CH4 emission from the organic sediment during the growing season varied between 3.4 and 19.0 mg m–2 h–1, but from sand the net CH4 emission was only 3–10% of that measured from the organic sediment. In the organic sediment net CH4 emission was very significantly correlated with sediment temperature (r2 = 0.92). In the sand mesocosms the variation of net CH4 emission was better correlated with the shoot biomass than with sediment temperature variation during the growing season, indicating that methanogens were severely limited by substrate availability and were probably dependent on substrates produced by E. fluviatile. The proportion of the methane oxidized of the potential CH4 emission in summer did not differ significantly between the bottom types. The net CH4 emission during the growing season as a proportion of the seasonal maximum of the shoot biomass was significantly higher in the organic sediment mesocosms (6.5%) than in sand (1.7%). The high CH4 emissions observed from dense well-established E. fluviatile stands in the field appear to be more related to temperature-regulated turnover of detritus in the anaerobic sediment and less to CH4 oxidation and seasonal variation in plant growth dynamics  相似文献   

3.
Variation of CH4 emissions over a three-year period was studied in a reed-dominated (Phragmites australis) littoral transect of a boreal lake undergoing shoreline displacement due to postglacial rebound. The seasonal variation in plant-mediated CH4 emissions during open-water periods was significantly correlated with sediment temperature. The highest plant-mediated emission rates (up to 2050 mg CH4 m–2 d–1) were found in the outermost reed zone, where culms of the previous growing seasons had accumulated and free-floating plants grew on the decomposing culms. In reed zones closer to the shoreline as well as in mixed stands of reed and cattail, the maximum daily rates were usually > 500 mg CH4 m–2 d–1. The total plant-mediated CH4 emission during the open-water period was significantly correlated with the seasonal maximum of green shoot biomass. This relationship was strongest in the continuously flooded (water depth > 25 cm) outermost zones. In this area, emissions through ebullition were of greatest importance and could exceed plant-mediated emissions. In general, total emissions of the open-water periods varied from ca. 20 to 50 g CH4 m–2 a–1, but in the outermost reed zone, the plant-mediated emissions could be as high as 123 g CH4 m–2 a–1; ebullition emissions from this zone reached > 100 g CH4 m–2 a–1. The proportion of CH4 released in winter was usually < 10% of annual emissions. Emissions of CH4 were higher in this flooded transgression shore the than those measured in boreal peatlands, but the role of ancient carbon stores as a substrate supply compared with recent anthropogenic eutrophication is unknown.  相似文献   

4.
Sources of methane (CH4) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH4, such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH4 emissions from rice paddies, natural wetlands, and lakes in China were first reviewed and then reestimated based on the review itself. Total emissions from the three CH4 sources were 11.25 Tg CH4 yr?1 (ranging from 7.98 to 15.16 Tg CH4 yr?1). Among the emissions, 8.11 Tg CH4 yr?1 (ranging from 5.20 to 11.36 Tg CH4 yr?1) derived from rice paddies, 2.69 Tg CH4 yr?1 (ranging from 2.46 to 3.20 Tg CH4 yr?1) from natural wetlands, and 0.46 Tg CH4 yr?1 (ranging from 0.33 to 0.59 Tg CH4 yr?1) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern China the greatest overall source of CH4, accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH4 emissions recorded within Qinghai‐Tibetan Plateau peatlands. Total CH4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH4, but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH4 emissions deriving from wetlands and lakes in China.  相似文献   

5.
1. Annual and diel variations in methane (CH4) release in stands of Equisetum fluviatile were measured from June to November in Lake Pääjärvi, southern Finland, where E. fluviatile is the dominant emergent macrophyte. An estimate of total annual release of CH4 from stands of E. fluviatile in this lake was also made. Diel variation was measured twice (June and August), whereas measurements for annual variation were performed monthly. The hypothesis that a relationship exists between the productivity of stands and CH4 release was also tested, whereupon net ecosystem exchange (NEE) of CO2 as well as standing stock of E. fluviatile were determined, in addition to simultaneous recordings of air temperature and solar radiation. 2. Seasonal variations in CH4 release were pronounced, with the highest release rate of 813 mg m–2 day–1 measured in July and the lowest 6.5 mg m–2 day–1 in November, when the shoreline was already frozen. 3. Methane release rates were strongly correlated with mean air temperature in the measuring chambers and with total solar radiation. There was no significant correlation between the instantaneous radiation and CH4 release rates. 4. The seasonal patterns of CH4 release and NEE of CO2 resembled each other, except in July when NEE suddenly dropped. The decrease in NEE coincided with the highest CH4 release rate measured and the highest temperature during the measuring period, i.e. 32 °C outside and 37 °C inside the chamber. Excluding this date, daily CH4 release was strongly correlated with NEE (r2 = 0.971). 5. No diel changes in CH4 release rates were detected. In June and August the maximum release rates were 11.4 and 16.8 mg CH4 m–2 h–1, respectively. 6. The standing stock of E. fluviatile at different times of the growing season was not correlated with CH4 efflux; the CH4 release rates could be related neither to the number of shoots, i.e. sufficient conduits for gas transport were always present, nor to the shoot biomass in the measuring chambers. 7. For an estimate of the annual release, the monthly values measured at noon were integrated over the entire growing season; this resulted in 43.7 g CH4 m–2 for the annual emission. The total annual emission of CH4 from the area covered with E. fluviatile in Lake Pääjärvi was calculated to be ≈ 5000 kg. 8. Significant amounts of CH4 are released from stands of E. fluviatile in boreal lakes. The CH4 release rate follows a seasonal pattern but there is no diel pattern. Methane release rate can be related to temperature, solar radiation and NEE of CO2, but not to the standing stock of E. fluviatile or the number of shoots.  相似文献   

6.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   

7.
We measured CO2 and CH4 concentrations throughout the water columns of two boreal lakes with contrasting trophic status and water color during a wet summer. Previous work suggested that rainfall was important for carbon gas evasion. During the stratified period, precipitation generated unexpected variabilities in CO2, CH4, and DOC concentrations below the euphotic zone, especially in the metalimnion. The DOC concentrations after the rains rose to 22 and 10 mg L?1 from the initial 13 and 8 mg L?1, in the humic and clear-water lakes respectively, simultaneously with an increase in carbon gas concentrations. In both lakes, the water column was stable, suggesting that the high gas concentrations were not due to transport from hypolimnia rich in carbon gases. The high concentrations of CH4, which can only be produced in anoxic conditions, in the oxic metalimnion and epilimnion in comparison to the hypolimnetic concentrations indicated that a considerable proportion of the pelagic CH4 originated from the catchment and/or the littoral zone. Thus, as a consequence of high levels of precipitation, carbon gas concentrations during summer stratification can increase, which can have overall importance in annual carbon budgets.  相似文献   

8.
Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large‐scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m?2 d?1), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4 + CO2), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2‐equivalents. The incorporation of ebullition and plant‐mediated CH4 fluxes would further increase the importance of lake CH4. The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning.  相似文献   

9.
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long‐term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. ?1.0 to 12.6 mg m?2 h?1 in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300–400 mg m?2 h?1) and lowest during the wet period (60–132 mg m?2 h?1) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within‐site variability in gas release but the effect was site‐specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model.  相似文献   

10.
Data from remote sensing and Eddy towers indicate that forests are not always net sinks for atmospheric CH4. However, studies describing specific sources within forests and functional analysis of microorganisms on sites with CH4 turnover are scarce. Feather moss stands were considered to be net sinks for carbon dioxide, but received little attention to their role in CH4 cycling. Therefore, we investigated methanogenic rates and pathways together with the methanogenic microbial community composition in feather moss stands from temperate and boreal forests. Potential rates of CH4 emission from intact moss stands (n = 60) under aerobic conditions ranged between 19 and 133 pmol CH4 h?1 gdw?1. Temperature and water content positively influenced CH4 emission. Methanogenic potentials determined under N2 atmosphere in darkness ranged between 22 and 157 pmol CH4 h?1 gdw?1. Methane production was strongly inhibited by bromoethane sulfonate or chloroform, showing that CH4 was of microbial origin. The moss samples tested contained fluorescent microbial cells and between 104 and 105 copies per gram dry weight moss of the mcrA gene coding for a subunit of the methyl CoM reductase. Archaeal 16S rRNA and mcrA gene sequences in the moss stands were characteristic for the archaeal families Methanobacteriaceae and Methanosarcinaceae. The potential methanogenic rates were similar in incubations with and without methyl fluoride, indicating that the CH4 was produced by the hydrogenotrophic rather than aceticlastic pathway. Consistently, the CH4 produced was depleted in 13C in comparison with the moss biomass carbon and acetate accumulated to rather high concentrations (3–62 mM). The δ13C of acetate was similar to that of the moss biomass, indicating acetate production by fermentation. Our study showed that the feather moss stands contained active methanogenic microbial communities producing CH4 by hydrogenotrophic methanogenesis and causing net emission of CH4 under ambient conditions, albeit at low rates.  相似文献   

11.
Natural wetlands release about 20% of global emissions of CH4, an effective greenhouse gas contributing to the total radiative forcing. Thus, changes in the carbon cycle in wetlands could have significant impacts on climate. The effect of raised supply of CO2 or NH4NO3 on the annual CH4 efflux from the lawn of a boreal oligotrophic mire was investigated over two years. Ten study plots were enclosed with mini‐FACE rings, five vented with CO2‐enriched air and the other five with ambient air. In addition, five plots were sprayed with NH4NO3 so that the cumulative addition of N was 3 g m?2 y?1; and five plots were controls. The CO2 enrichment (target concentration 560 ppmv) increased CH4 efflux about 30–40%, but half of this increase seemed to be caused by the air‐blowing system. The increasing atmospheric concentration of CO2 would promote CH4 release in boreal mires, but the increase in CH4 efflux would be clearly smaller than that reported in studies made in temperate or subtropical temperature conditions. Addition of N enhanced the annual release of CH4 only slightly. At least over the short‐term, the increase in N deposition would have little effect on CH4 effluxes. The increase in CH4 release would probably increase radiative forcing and thus accelerate climate change. However, CH4 effluxes are only a small part in the whole matter balance in mires and thus further studies are needed to define the net effects of raised supply of CO2 or N for carbon accumulation, trace gas fluxes and radiative forcing.  相似文献   

12.
Arctic lakes are a significant source of the greenhouse gas methane (CH4), but the role that methane oxidizing bacteria (methanotrophs) play in limiting the overall CH4 flux is poorly understood. Here, we used stable isotope probing (SIP) techniques to identify the metabolically active aerobic methanotrophs in upper sediments (0–1 cm) from an arctic lake in northern Alaska sampled during ice‐free summer conditions. The highest CH4 oxidation potential was observed in the upper sediment (0–1 cm depth) with 1.59 µmol g wet weight?1 day?1 compared with the deeper sediment samples (1–3 cm, 3–5 cm and 5–10 cm), which exhibited CH4 oxidation potentials below 0.4 µmol g wet weight?1 day?1. Both type I and type II methanotrophs were directly detected in the upper sediment total communities using targeted primer sets based on 16S rRNA genes. Sequencing of 16S rRNA genes and functional genes (pmoA and mxaF) in the 13C‐DNA from the upper sediment indicated that type I methanotrophs, mainly Methylobacter, Methylosoma, Methylomonas and Methylovulum miyakonense, dominated the assimilation of CH4. Methylotrophs, including the genera Methylophilus and/or Methylotenera, were also abundant in the 13C‐DNA. Our results show that a diverse microbial consortium acquired carbon from CH4 in the sediments of this arctic lake.  相似文献   

13.
Eddy covariance measurements of methane (CH4) net flux were made in a boreal fen, typical of the most abundant peatlands in western Canada during May–September 2007. The objectives of this study were to determine: (i) the magnitude of diurnal and seasonal variation in CH4 net flux, (ii) the relationship between the temporally varying flux rates and associated changes in controlling biotic and abiotic factors, and (iii) the contribution of CH4 emission to the ecosystem growing season carbon budget. There was significant diurnal variation in CH4 emission during the peak of the growing season that was strongly correlated with associated changes in solar radiation, latent heat flux, air temperature and ecosystem conductance to water vapor. During days 181–215, nighttime average CH4 efflux was only 47% of the average midday values. The peak value for daily average CH4 emission rate was approximately 80 nmol m?2 s?1 (4.6 mg CH4 m?2 h?1), and seasonal variation in CH4 flux was strongly correlated with changes in soil temperature. Integrated over the entire measurement period [days 144–269 (late May–late September)], the total CH4 emission was 3.2 g CH4 m?2, which was quite low relative to other wetland ecosystems and to the simultaneous high rate of ecosystem net CO2 sequestration that was measured (18.1 mol CO2 m?2 or 217 g C m?2). We estimate that the negative radiative forcing (cooling) associated with net carbon storage over the life of the peatland (approximately 2200 years) was at least twice the value of positive radiative forcing (warming) caused by net CH4 emission over the last 50 years.  相似文献   

14.
Lake littoral zones have a transitional nature and dynamic conditions, which are reflected in their CH4 emissions. Thus, detailed studies are needed to assess the littoral CH4 emissions in a regional scale. In this study, CH4 fluxes were followed during the ice‐free seasons in 1998 and 1999 by using the static chamber method in the littoral zone of two lakes in Finland. An exceptionally high water level in 1998 caused an unusually long inundation in otherwise ephemerally flooded zone. The flooding was normal in year 1999. The factors controlling CH4 emissions were examined and statistical response functions were constructed. Further, the effect of extended flooding on the littoral CH4 budged was estimated. The methane flux was primarily regulated by the water level in grass and sedge dominated eulittoral zone, but not in infralittoral reed and water lily stands. Methane emissions in the sedge dominated zone decreased significantly, when the flood was high enough to submerge the venting structures of the plants. Besides water level, sediment temperature determined CH4 emission. The cumulative CH4 emissions from the whole littoral wetlands in wet year were 1.1 times (L. Kevätön), or 0.61 and 0.79 times (L. Mekrijärvi) those in dry year. The crucial factor was the discrepancy between the exceptional and the average water level. The extension of inundated area does not necessarily increase CH4 emissions if the flood reaches infrequently inundated areas, which apparently have low CH4 production potential. This is the case especially, if the emissions in lower zones simultaneously decrease due to high water level. Our study analyses these complex responses between CH4 emissions and water level.  相似文献   

15.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

16.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   

17.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

18.
Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha?1 for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57–505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (< 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha?1 in open water, bare tidal flat and S. salsa marsh, respectively, compared with ‐0.51 kg N2O ha?1 for S. alterniflora marsh and ?0.25 kg N2O ha?1 for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha?1 yr?1 in the top 100 cm soil profile, a value that was 2.63‐ to 8.78‐fold higher than in native plant marshes. The estimated GWP was 1.78, ?0.60, ?4.09, and ?1.14 Mg CO2eq ha?1 yr?1 in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to ?11.30 Mg CO2eq ha?1 yr?1 in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.  相似文献   

19.
Aerobic methane (CH4) oxidation mitigates CH4 release and is a significant pathway for carbon and energy flow into aquatic food webs. Arctic lakes are responsible for an increasing proportion of global CH4 emissions, but CH4 assimilation into the aquatic food web in arctic lakes is poorly understood. Using stable isotope probing (SIP) based on phospholipid fatty acids (PLFA‐SIP) and DNA (DNA‐SIP), we tracked carbon flow quantitatively from CH4 into sediment microorganisms from an arctic lake with an active CH4 seepage. When 0.025 mmol CH4 g?1 wet sediment was oxidized, approximately 15.8–32.8% of the CH4‐derived carbon had been incorporated into microorganisms. This CH4‐derived carbon equated to up to 5.7% of total primary production estimates for Alaskan arctic lakes. Type I methanotrophs, including Methylomonas, Methylobacter and unclassified Methylococcaceae, were most active at CH4 oxidation in this arctic lake. With increasing distance from the active CH4 seepage, a greater diversity of bacteria incorporated CH4‐derived carbon. Actinomycetes were the most quantitatively important microorganisms involved in secondary feeding on CH4‐derived carbon. These results showed that CH4 flows through methanotrophs into the broader microbial community and that type I methanotrophs, methylotrophs and actinomycetes are important organisms involved in using CH4‐derived carbon in arctic freshwater ecosystems.  相似文献   

20.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号