首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increase in the concentration of glycerol in the ischemic brain is assumed to reflect degradation of phospholipids of plasma membranes. However, glycerol could, theoretically, be formed from glucose, which after glycolytic conversion to dihydroxyacetone phosphate, could be converted to glycerol-3-phosphate and hence to glycerol. We show here that (13)C-labeled glycerol accumulate in incubation media of cultured cerebellar granule cells and astrocytes incubated with [(13)C]glucose, 3 mmol/L, demonstrating the formation of glycerol from glucose. Co-incubation of cerebellar granule cells with kainate, 50 micromol/L, led to increased glucose metabolism and increased accumulation of [(13)C]glycerol. Accumulation of [(13)C]glycerol and its precursor, [(13)C]glycerol-3-phosphate, was evident in brain, but not in serum, of kainate-treated rats that received [U-(13)C]glucose, 5 micromol/g bodyweight, intravenously and survived for 5 min. Global ischemia induced by decapitation also caused accumulation of [(13)C]glycerol and [(13)C]glycerol-3-phosphate. These results show that glycerol can be formed from glucose in brain; they also demonstrate the existence of a cerebral glycerol-3-phosphatase activity. Ischemia-induced increases in brain glycerol may, in part, reflect an altered metabolism of glucose, in which glycerol formation, like lactate formation, acts as a redox sink.  相似文献   

2.
Glycerol uptake, glycerol kinase (EC 2.7.1.30) and glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) activities are specifically induced during growth ofPseudomonas aeruginosa PAO on either glycerol or glycerol-3-phosphate. Mutants of strain PAO unable to grow on both glycerol and glycerol-3-phosphate were isolated. Mutant PFB 121 was deficient in an inducible, membrane-bound, pyridine nucleotide-independent, glycerol-3-phosphate dehydrogenase activity and PFB 82 was deficient in glycerol uptake and glycerol kinase and glycerol-3-phosphate dehydrogenase activities. Each mutant spontaneously reverted to wild phenotype, which indicates that each contained a single genetic lesion. These results demonstrate that membrane-bound, inducible glycerol-3-phosphate dehydrogenase is required for catabolism of both glycerol and glycerol-3-phosphate and provide suggestive evidence for a single regulatory locus that controls the synthesis of glycerol uptake, glycerol kinase, and glycerol-3-phosphate dehydrogenase inP. aeruginosa.  相似文献   

3.
This study was performed to analyze the effects of the barbiturate thiopental on neuronal glutamate uptake, release and metabolism. Since barbiturates are known to bind to the GABA(A) receptor, some experiments were carried out in the presence of GABA. Cerebellar granule neurons were incubated for 2 h in medium containing 0.25 mM [U-(13)C]glutamate, 3 mM glucose, 50 microM GABA and 0.1 or 1 mM thiopental when indicated. When analyzing cell extracts, it was surprisingly found that in addition to glutamate, aspartate and glutathione, GABA was also labeled. In the medium, label was observed in glutamate, aspartate and lactate. Glutamate exhibited different labeling patterns, indicating metabolism in the tricarboxylic acid cycle, and subsequent release. A net uptake of [U-(13)C]glutamate and unlabeled glucose was seen under all conditions. The amounts of most metabolites synthesized from [U-(13)C]glutamate were unchanged in the presence of GABA with or without 0.1 mM thiopental. In the presence of 1 mM thiopental, regardless of the presence of GABA, decreased amounts of [1,2, 3-(13)C]glutamate and [U-(13)C]aspartate were found in the medium. In the cell extracts increased [U-(13)C]glutamate, [1,2, 3-(13)C]glutamate, labeled glutathione and [U-(13)C]aspartate were observed in the 1 mM thiopental groups. Glutamate efflux and uptake were studied using [(3)H]D-aspartate. While efflux was substantially reduced in the presence of 1 mM thiopental, this barbiturate only marginally inhibited uptake even at 3 mM. These results may suggest that the previously demonstrated neuroprotective action of thiopental could be related to its ability to reduce excessive glutamate outflow. Additionally, thiopental decreased the oxidative metabolism of [U-(13)C]glutamate but at the same time increased the detectable metabolites derived from the TCA cycle. These latter effects were also exerted by GABA.  相似文献   

4.
Abstract: Pre- and postsynaptic neurochemical markers for several afferent and intrinsic neuronal systems were measured in the mouse mutant, reeler. In the neocortex of the reeler, the relative positions of the polymorphic and pyramidal cells were inverted but this was not associated with alterations in the content/mg protein of synaptic markers for noradrenergic [tyrosine hydroxylase (TH), norepinephrine (NE), NE uptake], cholinergic [choline acetyltransferase (ChAT), quinuclidinyl benzilate (QNB) binding], γ-aminobutyric acid (GABA)ergic (glutamate decarboxylase, GABA uptake, GABA receptors, GABA) or glutamatergic (glutamate uptake, receptors, glutamate) neurons. The laminar distributions of the hippocampal neurons were disrupted and associated with mild hypoplasia; consistent with this alteration, the content/mg protein of some GABAergic (GABA uptake) and glutamatergic (glutamate receptors) markers were slightly increased. The reeler cerebellum was characterized not only by misalignment of neurons but also by a marked loss of granule cells. Commensurate with the degree of cerebellar hypoplasia, the total amount of glutamate content, [3H]l-glutamate uptake activity, [3H]muscimol, and [3H]QNB ligand binding were reduced in the reeler cerebellum. In contrast, presynaptic markers for the noradrenergic (TH, NE) climbing fibers and the cholinergic (ChAT) mossy fibers were significantly increased/mg protein but their total content/cerebellum was near normal. Our data support suggestions that cerebellar granule cells use glutamate as their neurotransmitter and contain GABA and cholinergic receptors. The findings also suggest that misplaced cortical and cerebellar neurons retain normal neurochemical characteristics and that the morphologic alterations do not markedly affect the quantitative development of aminergic afferent systems.  相似文献   

5.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

6.
7.
8.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   

9.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.  相似文献   

10.
In the yeast Saccharomyces cerevisiae, the most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are the external NADH dehydrogenases (Nde1p and Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p. Subsequently, glycerol 3-phosphate donates electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). At saturating concentrations of NADH, the activation of external NADH dehydrogenases completely inhibits glycerol 3-phosphate oxidation. Studies on the functionally isolated enzymes demonstrated that neither Nde1p nor Nde2p directly inhibits Gut2p. Thus, the inhibition of glycerol 3-phosphate oxidation may be caused by competition for the entrance of electrons into the respiratory chain. Using single deletion mutants of Nde1p or Nde2p, we have shown that glycerol 3-phosphate oxidation via Gut2p is inhibited fully when NADH is oxidized via Nde1p, whereas only 50% of glycerol 3-phosphate oxidation is inhibited when Nde2p is functioning. By comparing respiratory rates with different respiratory substrates, we show that electrons from Nde1p are favored over electrons coming from Ndip (internal NADH dehydrogenase) and that when electrons come from either Nde1p or Nde2p and succinodehydrogenase, their use by the respiratory chain is shared to a comparable extent. This suggests a very specific competition for electron entrance into the respiratory chain, which may be caused by the supramolecular organization of the respiratory chain. The physiological consequences of such regulation are discussed.  相似文献   

11.
Homogenates of isolated pancreatic islets contain 40-70 times as much flavin-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) as homogenates of whole pancreas, liver, heart, or skeletal muscle when the activity is assayed with either iodonitrotetrazolium or with dichloroindophenol as an electron acceptor. Intact mitochondria from islets release 3HOH from [2-3H]glycerol phosphate 7 times faster than do skeletal muscle mitochondria. The activity of the cytosolic, NAD-linked, glycerol phosphate dehydrogenase (EC 1.1.1.8) in pancreatic islets is comparable to that of the mitochondrial dehydrogenase so a glycerol phosphate shuttle is possible in pancreatic islets. Diazoxide, an inhibitor of insulin release in vivo and in vitro, inhibits the islet mitochondrial glycerol phosphate dehydrogenase in all three of the assays mentioned above at concentrations that inhibit insulin release and CO2 formation from glucose by isolated pancreatic islets. Diazoxide does not inhibit the dehydrogenase in mitochondria from skeletal muscle, liver, and heart. A slight inhibition in mitochondria from whole pancreas can be accounted for as inhibition of the islet dehydrogenase because no inhibition is observed in mitochondria from pancreas of rats treated with alloxan, an agent that causes diabetes by destroying pancreatic beta cells. The results of this study are compatible with the hypothesis that the mitochondrial glycerol phosphate dehydrogenase has a key role in stimulus-secretion coupling in the pancreatic beta cell during glucose-induced insulin release.  相似文献   

12.
13.
The effects of insulin on phospholipid metabolism and generation of diacylglycerol (DAG) and on activation of protein kinase C in rat hepatocytes were compared to those of vasopressin and angiotension II. Insulin provoked increases in [3H]glycerol labeling of phosphatidic acid (PA), diacylglycerol (DAG), and other glycerolipids within 30 s of stimulation. Similar increases were also noted for vasopressin and angiotensin II. Corresponding rapid increases in DAG mass also occurred with all three hormones. As increases in [3H]DAG (and DAG mass) occurred within 30-60 s of the simultaneous addition of [3H]glycerol and hormone, it appeared that DAG was increased, at least partly, through the de novo synthesis of PA. That de novo synthesis of PA was increased is supported by the fact that [3H]glycerol labeling of total glycerolipids was increased by all three agents. Increases in [3H]glycerol labeling of lipids by insulin were not due to increased labeling of glycerol 3-phosphate, and were therefore probably due to activation of glycerol-3-phosphate acyltransferase. Unlike vasopressin, insulin did not increase the hydrolysis of inositol phospholipids. Insulin- and vasopressin-induced increases in DAG were accompanied by increases in cytosolic and membrane-associated protein kinase C activity. These findings suggest that insulin-induced increases in DAG may lead to increases in protein kinase C activity, and may explain some of the insulin-like effects of phorbol esters and vasopressin on hepatocyte metabolism.  相似文献   

14.
Increased levels of extracellular glutamate are a consistent feature of hepatic encephalopathy (HE) associated with liver failure and other hyperammonemic pathologies. Reduction of glutamate uptake has been described in ammonia-exposed cultured astrocytes, synaptosomes, and in animal models of hyperammonemia. In the present study, we examine the effects of pathophysiological concentrations of ammonia on D-aspartate (a non-metabolizable analog of glutamate) uptake by cultured rat cerebellar granule neurons. Exposure of these cells to ammonia resulted in time-dependent (24% reduction at 24h and 60% reduction at 5 days, P<0.001) and dose-dependent (21, 37, and 57% reduction at 1, 2.5, and 5mM for 5 days, P<0.01) suppression of D-aspartate uptake. Kinetic analyses revealed significant decreases in the velocity of uptake (V(max)) (37% decrease at 2.5mM NH(4)Cl, P<0.05 and 52% decrease at 5mM NH(4)Cl, P<0.001) as well as significant reductions in K(m) values (25% reduction at 2.5mM NH(4)Cl, P<0.05 and 45% reduction at 5mM NH(4)Cl, P<0.001). Western blotting, on the other hand, showed no significant changes in the neuronal glutamate transporter EAAC1/EAAT3 protein, the only glutamate transporter currently known to be expressed by these cells. In addition, 1H combined with 13C-NMR spectroscopy studies using the stable isotope [1-13C]-glucose demonstrated a significant increase in intracellular glutamate levels derived from the oxidative metabolism of glucose, rather than from the deamidation of exogenous glutamine in cultured granule neurons exposed to ammonia. The present study provides evidence that the effects of ammonia on glutamate uptake are not solely an astrocytic phenomenon and that unlike the astrocytic glutamate transporter counterpart, EAAT3 protein expression in cultured cerebellar granule cells is not down-regulated when exposed to ammonia. Decrease of glutamate uptake in these cellular preparations may afford an additional regulatory mechanism aimed at controlling intracellular levels of glutamate and ultimately the releasable pool of glutamate in neurons.  相似文献   

15.
16.
Pyruvate given in large doses may be neuroprotective in stroke, but it is not known to what degree the brain metabolizes pyruvate. Intravenous injection of [3-13C]pyruvate led to dose-dependent labelling of cerebral metabolites so that at 5 min after injection of 18 mmoles [3-13C]pyruvate/kg (2 g sodium pyruvate/kg), approximately 20% of brain glutamate and GABA were labelled, as could be detected by 13C nuclear magnetic resonance spectrometry ex vivo. Pyruvate, 9 mmoles/kg, was equivalent to glucose, 9 mmoles/kg, as a substrate for cerebral tricarboxylic acid (TCA) cycle activity. Inhibition of the glial TCA cycle with fluoroacetate did not affect formation of [4-13C]glutamate or [2-13C]GABA from [3-13C]pyruvate, but reduced formation of [4-13C]glutamine by 50%, indicating predominantly neuronal metabolism of exogenous pyruvate. Extensive formation of [3-13C]lactate from [2-13C]pyruvate demonstrated reversible carboxylation of pyruvate to malate and equilibration with fumarate, presumably in neurones, but anaplerotic formation of TCA cycle intermediates from exogenous pyruvate could not be detected. Too rapid injection of large amounts of pyruvate led to seizure activity, respiratory arrest and death. We conclude that exogenous pyruvate is an excellent energy substrate for neurones in vivo, but that care must be taken to avoid the seizure-inducing effect of pyruvate given in large doses.  相似文献   

17.
Glycerol-3-phosphate dehydrogenase from pig brain mitochondria was stimulated 2.2-fold by the addition of 50 microm l-ascorbic acid. Enzyme activity, dependent upon the presence of l-ascorbic acid, was inhibited by lauryl gallate, propyl gallate, protocatechuic acid ethyl ester, and salicylhydroxamic acid. Homogeneous pig brain mitochondrial glycerol-3-phosphate dehydrogenase was activated by either 150 microm L-ascorbic acid (56%) or 300 microm iron (Fe(2+) or Fe(3+) (62%)) and 2.6-fold by the addition of both L-ascorbic acid and iron. The addition of L-ascorbic acid and iron resulted in a significant increase of k(cat) from 21.1 to 64.1 s(-1), without significantly increasing the K(m) of L-glycerol-3-phosphate (10.0-14.5 mm). The activation of pure glycerol-3-phosphate dehydrogenase by either L-ascorbic acid or iron or its combination could be totally inhibited by 200 microm propyl gallate. The metabolism of [5-(3)H]glucose and the glucose-stimulated insulin secretion from rat insulinoma cells, INS-1, were effectively inhibited by 500 microm or 1 mm propyl gallate and to a lesser extent by 5 mm aminooxyacetate, a potent malate-aspartate shuttle inhibitor. The combined data support the conclusion that l-ascorbic acid is a physiological activator of mitochondrial glycerol-3-phosphate dehydrogenase, that the enzyme is potently inhibited by agents that specifically inhibit certain classes of di-iron metalloenzymes, and that the enzyme is chiefly responsible for the proximal signal events in INS-1 cell glucose-stimulated insulin release.  相似文献   

18.
Glutamate neurotoxicity is implicated in most neurodegenerative diseases, and in the present study the long-term effects of the glutamate agonist kainic acid (KA) on cerebellar neurons are investigated. Primary cell cultures, mainly consisting of glutamatergic granule neurons, were cultured in medium containing 0.05 or 0.50 mM KA for 7 days and subsequently incubated in medium containing [U-13C]glutamate or [U-13C]glutamine. The amount of protein and number of cells were greatly reduced in cultures exposed to 0.50 mM KA compared to those exposed to 0.05 mM KA. Glutamine consumption was not affected by KA concentration, whereas that of glutamate was decreased by high KA, confirming reduction in glutamate transport reported earlier. Neurons cultured with 0.50 mM KA and incubated with glutamate contained decreased amounts of glutamate, aspartate and GABA compared to those cultured with 0.05 mM KA. Incubation of cells exposed to 0.50 mM KA with glutamine led to an increased amount of glutamate compared to cells exposed to 0.05 mM KA, whereas the intracellular amounts of aspartate and GABA remained unaffected by KA concentration. Furthermore, mitochondrial metabolism of -[U-13C]ketoglutarate derived from [U-13C]glutamate and [U-13C]glutamine was significantly reduced by 0.50 mM KA. The results presented illustrate differential vulnerability to KA and can only be understood in terms of inter- and intracellular compartmentation.  相似文献   

19.
The aim of the present study was to identify the distinguishing metabolic characteristics of brain tissue salvaged by reperfusion following focal cerebral ischemia. Rats were subjected to 120 min of middle cerebral artery occlusion followed by 120 min of reperfusion. The rats received an intravenous bolus injection of [1-(13)C]glucose plus [1,2-(13)C]acetate. Subsequently two brain regions considered to represent penumbra and ischemic core, i.e. the frontoparietal cortex and the lateral caudoputamen plus lower parietal cortex, respectively, were analyzed with (13)C NMRS and HPLC. The results demonstrated four metabolic events that distinguished the reperfused penumbra from the ischemic core. (1) Improved astrocytic metabolism demonstrated by increased amounts of [4,5-(13)C]glutamine and improved acetate oxidation. (2) Neuronal mitochondrial activity was better preserved although the flux of glucose via pyruvate dehydrogenase into the tricarboxylic acid (TCA) cycle in glutamatergic and GABAergic neurons was halved. However, NAA content was at control level. (3) Glutamatergic and GABAergic neurons used relatively more astrocytic metabolites derived from the pyruvate carboxylase pathway. (4) Lactate synthesis was not increased despite decreased glucose metabolism in the TCA cycle via pyruvate dehydrogenase. In the ischemic core both neuronal and astrocytic TCA cycle activity declined significantly despite reperfusion. The utilization of astrocytic precursors originating from the pyruvate carboxylase pathway was markedly reduced compared the pyruvate dehydrogenase pathway in glutamate, and completely stopped in GABA. The NAA level fell significantly and lactate accumulated. The results demonstrate that preservation of astrocytic metabolism is essential for neuronal survival and a predictor for recovery.  相似文献   

20.
Keeping a cytosolic redox balance is a prerequisite for living cells in order to maintain a metabolic activity and enable growth. During growth of Saccharomyces cerevisiae, an excess of NADH is generated in the cytosol. Aerobically, it has been shown that the external NADH dehydrogenase, Nde1p and Nde2p, as well as the glycerol-3-phosphate dehydrogenase shuttle, comprising the cytoplasmic glycerol-3-phosphate dehydrogenase, Gpdlp, and the mitochondrial glycerol-3-phosphate dehydrogenase, Gut2p, are the most important mechanisms for mitochondrial oxidation of cytosolic NADH. In this review we summarize the recent results showing (i) the contribution of each of the mechanisms involved in mitochondrial oxidation of the cytosolic NADH, under different physiological situations; (ii) the kinetic and structural properties of these metabolic pathways in order to channel NADH from cytosolic dehydrogenases to the inner mitochondrial membrane and (iii) the organization in supramolecular complexes and, the peculiar ensuing kinetic regulation of some of the enzymes (i.e. Gut2p inhibition by external NADH dehydrogenase activity) leading to a highly integrated functioning of enzymes having a similar physiological function. The cell physiological consequences of such an organized and regulated network are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号