首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Permeases of the equilibrative nucleoside transporter family mediate the uptake of nucleosides and/or nucleobases in a diverse array of eukaryotes and transport a host of drugs used for treatment of cancer, heart disease, AIDS, and parasitic infections. To identify residues that play central roles in transport function, we have systematically substituted by site-directed mutagenesis all the charged residues located within predicted transmembrane domains of the Leishmania donovani nucleoside transporter 1.1, LdNT1.1, which transports adenosine and the pyrimidine nucleosides. Substitution of three of these ten residues by uncharged amino acids resulted in loss of >95% transport activity, and we hence designated them "key" residues. These amino acids were Glu94, Lys153, and Arg404 located in transmembrane domains 2, 4, and 9, respectively. In addition, previous studies on the related LdNT2 inosine/guanosine transporter identified the highly conserved Asp389 and Arg393 (equivalent to Asp374 and Arg378 in LdNT1.1) in transmembrane domain 8 as key residues. Among these residues, the mutants in Arg393 (LdNT2) and Arg404 were strongly impaired in trafficking to the plasma membrane, but the other mutants were expressed with high to moderate efficiency at the cell surface, indicating that their mutation impaired transport activity per se. A conservative K153R substitution exhibited a change in substrate specificity, acquiring the ability to transport inosine, a nucleoside that is not a substrate for the wild-type LdNT1.1 permease. These results imply that the Glu94, Lys153, and Asp374 residues may play central roles in the mechanism of substrate translocation in LdNT1.1.  相似文献   

2.
Leishmania donovani express two members of the equilibrative nucleoside transporter family; LdNT1 encoded by two closely related and linked genes, LdNT1.1 and LdNT1.2, that transport adenosine and pyrimidine nucleosides and LdNT2 that transports inosine and guanosine exclusively. LdNT1.1, LdNT1.2, and LdNT2 have been expressed in Xenopus laevis oocytes and found to be electrogenic in the presence of nucleoside ligands for which they mediate transport. Further analysis revealed that ligand uptake and transport currents through LdNT1-type transporters are proton-dependent. In addition to the flux of protons that is coupled to the transport reaction, LdNT1 transporters mediate a variable constitutive proton conductance that is blocked by substrates and dipyridamole. Surprisingly, LdNT1.1 and LdNT1.2 exhibit different electrogenic properties, despite their close sequence homology. This electrophysiological study provides the first demonstration that members of the equilibrative nucleoside transporter family can be electrogenic and establishes that these three permeases, unlike their mammalian counterparts, are probably concentrative rather than facilitative transporters.  相似文献   

3.
Plasma membrane monoamine transporter (PMAT or ENT4) is a newly cloned transporter assigned to the equilibrative nucleoside transporter (ENT) family (SLC29). Unlike ENT1-3, PMAT mainly functions as a polyspecific organic cation transporter. In this study, we investigated the molecular mechanisms underlying the unique substrate selectivity of PMAT. By constructing chimeras between human PMAT and ENT1, we showed that a chimera consisting of transmembrane domains (TM) 1-6 of PMAT and TM7-11 of hENT1 behaved like PMAT, transporting 1-methyl-4-phenylpyridinium (MPP+, an organic cation) but not uridine (a nucleoside), suggesting that TM1-6 contains critical domains responsible for substrate recognition. To identify residues important for the cation selectivity of PMAT, 10 negatively charged residues were chosen and substituted with alanine. Five of the alanine mutants retained PMAT activity, and four were non-functional due to impaired targeting to the plasma membrane. However, alanine substitution at Glu(206) in TM5 abolished PMAT activity without affecting cell surface expression. Eliminating the charge at Glu(206) (E206Q) resulted in loss of organic cation transport activity, whereas conserving the negative charge (E206D) restored transporter function. Interestingly, mutant E206Q, which possesses the equivalent residue in ENT1, gained uridine transport activity. Thr(220), another residue in TM5, also showed an effect on PMAT activity. Helical wheel analysis of TM5 revealed a distinct amphipathic pattern with Glu(206) and Thr(220) clustered in the center of the hydrophilic face. In summary, our results suggest that Glu(206) functions as a critical charge sensor for cationic substrates and TM5 forms part of the substrate permeation pathway in PMAT.  相似文献   

4.
ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.  相似文献   

5.
Na/HCO(3) cotransporters (NBCs) such as NBCe1 are members of a superfamily of bicarbonate transporters that includes anion exchangers. Residues within putative transmembrane domain 8 (TMD8) of anion exchanger 1 are involved in ion translocation (Tang, X. B., Kovacs, M., Sterling, D., and Casey, J. R. (1999) J. Biol. Chem. 274, 3557-3564), and the corresponding domain in NBCe1 variants is highly homologous. We performed cysteine-scanning mutagenesis to examine the role of TMD8 residues in ion translocation by rat NBCe1-A. We accessed function and/or sulfhydryl sensitivity and p-chloromercuribenzene sulfonate (pCMBS) accessibility of 21 cysteine-substituted NBC mutants expressed in Xenopus oocytes using the two-electrode, voltage clamp technique. Five NBC mutants displayed <10% wild-type activity: P743C, A744C, L746C, D754C, and T758C. For the remaining 16 mutants, we compared transporter-mediated inward currents elicited by removing external Na(+) before and after exposing oocytes to either 2-aminoethylmethane thiosulfonate (MTSEA) or pCMBS. MTSEA inhibited NBC mutants T748C, I749C, I751C, F752C, M753C, and Q756C by 9-19% and stimulated mutants A739C, A741C, L745C, V747C, Q755C, and I757C by 11-21%. pCMBS mildly inhibited mutants A739C, A740, V747C, and Q756C by 5 or 8%, and stimulated I749C by 10%. However, both sulfhydryl reagents strongly inhibited the L750C mutant by > or =85%. Using the substituted cysteine accessibility method, we examined the accessibility of the NBC mutant L750C under different transporter conditions. pCMBS accessibility is (i) reduced when the transporter is active in the presence of both Na(+) and HCO(3)(-), likely due to substrate competition with pCMBS; (ii) reduced in the presence of a stilbene inhibitor; and (iii) stimulated at more positive membrane potentials. In summary, TMD8 residues of NBCe1, particularly L750, are involved in ion translocation, and accessibility is influenced by the state of transporter activity.  相似文献   

6.
Leishmania major, like all the other kinetoplastid protozoa, are unable to synthesize purines and rely on purine nucleobase and nucleoside acquisition across the parasite plasma membrane by specific permeases. Although, several genes have been cloned that encode nucleoside transporters in Leishmania and Trypanosoma brucei, much less progress has been made on nucleobase transporters, especially at the molecular level. The studies reported here have cloned and expressed the first gene for a L. major nucleobase transporter, designated LmaNT3. The LmaNT3 permease shows 33% identity to L. donovani nucleoside transporter 1.1 (LdNT1.1) and is, thus, a member of the equilibrative nucleoside transporter (ENT) family. ENT family members identified to date are nucleoside transporters, some of which also transport one or several nucleobases. Functional expression studies in Xenopus laevis oocytes revealed that LmaNT3 mediates high levels of uptake of hypoxanthine, xanthine, adenine and guanine. Moreover, LmaNT3 is an high affinity transporter with K(m) values for hypoxanthine, xanthine, adenine and guanine of 16.5 +/- 1.5, 8.5 +/- 0.6, 8.5 +/- 1.1, and 8.8 +/- 4.0 microM, respectively. LmaNT3 is, thus, the first member of the ENT family identified in any organism that functions as a nucleobase rather than nucleoside or nucleoside/nucleobase transporter.  相似文献   

7.
When reconstituted into proteoliposomes, the human erythrocyte nucleoside transporter catalysed nitrobenzylthioguanosine (NBTGR)-sensitive zero-trans influx of three different nucleosides at broadly similar rates (inosine, uridine greater than adenosine). However, proteoliposomes also exhibited high rates of NBTGR-insensitive uptake of adenosine, making this nucleoside unsuitable for reconstitution studies. Equivalent high rates of adenosine influx were observed in protein-free liposomes, establishing that this permeability pathway represents simple diffusion of nucleoside across the lipid bilayer. In contrast to adenosine, inosine and uridine exhibited acceptable rates of NBTGR-insensitive uptake. Of the two, inosine is the more attractive permeant for reconstitution experiments, having a 2.5-fold lower basal membrane permeability. Studies of nucleoside transport specificity in reconstituted membrane vesicles should take account of the widely different passive permeabilities of different nucleosides.  相似文献   

8.
The major nucleoside transporter of the human T leukemia cell line CEM has been identified by photoaffinity labeling with the transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR). The photolabeled protein migrates on SDS-PAGE gels as a broad band with a mean apparent molecular weight (75,000 +/- 3000) significantly higher than that reported for the nucleoside transporter in human erythrocytes (55,000) (Young et al. (1983) J. Biol. Chem. 258, 2202-2208). However, after treatment with endoglycosidase F to remove carbohydrate, the NBMPR-binding protein in CEM cells migrates as a sharp peak with an apparent molecular weight (47,000 +/- 3000) identical to that reported for the deglycosylated protein in human erythrocytes (Kwong et al. (1986) Biochem. J. 240, 349-356). It therefore appears that the difference in the apparent molecular weight of the NBMPR-sensitive nucleoside transporter between the CEM cell line and human erythrocytes is a result of differences in glycosylation. The NBMPR-binding protein from CEM cells has been solubilized with 1% octyl glucoside and reconstituted into phospholipid vesicles by a freeze-thaw sonication technique. Optimal reconstitution of uridine transport activity was achieved using a sonication interval of 5 to 10 s and lipid to protein ratios of 60:1 or greater. Under these conditions transport activity in the reconstituted vesicles was proportional to the protein concentration and was inhibited by NBMPR. Omission of lipid or protein, or substitution of a protein extract prepared from a nucleoside transport deficient mutant of the CEM cell line resulted in vesicles with no uridine transport activity. The initial rate of uridine transport, in the vesicles prepared with CEM protein, was saturable with a Km of 103 +/- 11 microM and was inhibited by adenosine, thymidine and cytidine. The Km for uridine and the potency of the other nucleosides as inhibitors of uridine transport (adenosine greater than thymidine greater than cytidine) were similar to intact cells. Thus, although the nucleoside transporter of CEM cells has a higher molecular weight than the human erythrocyte transporter, it exhibits typical NBMPR-sensitive nucleoside transport activity both in the intact cell and when reconstituted into phospholipid vesicles.  相似文献   

9.
The human equilibrative nucleoside transporter, hENT1, which is sensitive to inhibition by nitrobenzylthioinosine (NBMPR), is expressed in a wide variety of tissues. hENT1 is involved in the uptake of natural nucleosides, including regulation of the physiological effects of extracellular adenosine, and transports nucleoside drugs used in the treatment of cancer and viral diseases. Structure-function studies have revealed that transmembrane domains (TMD) 3 through 6 of hENT1 may be involved in binding of nucleosides. We have hypothesized that amino acid residues within TMD 3-6, which are conserved across equilibrative transporter sequences from several species, may have a critical role in the binding and transport of nucleosides. Therefore, we explored the role of point mutations of two conserved glycine residues, at positions 179 and 184 located in transmembrane domain 5 (TMD 5), using a GFP-tagged hENT1 in a yeast nucleoside transporter assay system. Mutations of glycine 179 to leucine, cysteine, or valine abolished transporter activity without affecting the targeting of the transporter to the plasma membrane, whereas more conservative mutations such as glycine to alanine or serine preserved both targeting to the plasma membrane and transport activity. Similar point mutations at glycine 184 resulted in poor targeting of hENT1 to the plasma membrane and little or no detectable functional activity. Uridine transport by G179A mutant was significantly lower (p < 0.05) and less sensitive (p < 0.05) to inhibition by NBMPR when compared to the wild-type transporter (IC(50) 7.7 +/- 0.8 nM versus 46 +/- 14.6 nM). Based on these data, we conclude that when hENT1 is expressed in yeast, glycine 179 is critical not only to the ability of hENT1 to transport uridine but also as a determinant of hENT1 sensitivity to NBMPR. In contrast, glycine 184 is likely important in targeting the transporter to the plasma membrane. This is the first identification and characterization of a critical amino acid residue of hENT1 that is important in both nucleoside transporter function and sensitivity to inhibition by NBMPR.  相似文献   

10.
The nucleoside transport systems in cultured epididymal epithelium were characterized and found to be similar between the proximal (caput and corpus) and distal (cauda) regions of the epididymis. Functional studies revealed that 70% of the total nucleoside uptake was Na(+) dependent, while 30% was Na(+) independent. The Na(+)-independent nucleoside transport was mediated by both the equilibrative nitrobenzylthioinosine (NBMPR)-sensitive system (40%) and the NBMPR-insensitive system (60%), which was supported by a biphasic dose response to NBMPR inhibition. The Na(+)-dependent [(3)H]uridine uptake was selectively inhibited 80% by purine nucleosides, indicating that the purine nucleoside-selective N1 system is predominant. Since Na(+)-dependent [(3)H]guanosine uptake was inhibited by thymidine by 20% and Na(+)-dependent [(3)H]thymidine uptake was broadly inhibited by purine and pyrimidine nucleosides, this suggested the presence of the broadly selective N3 system accounting for 20% of Na(+)-dependent nucleoside uptake. Results of RT-PCR confirmed the presence of mRNA for equilibrative nucleoside transporter (ENT) 1, ENT2, and concentrative nucleoside transporter (CNT) 2 and the absence of CNT1. It is suggested that the nucleoside transporters in epididymis may be important for sperm maturation by regulating the extracellular concentration of adenosine in epididymal plasma.  相似文献   

11.
Equilibrative nucleoside transporters of the SLC29 family play important roles in many physiological and pharmacological processes, including import of drugs for treatment of cancer, AIDS, cardiovascular, and parasitic diseases. However, no crystal structure is available for any member of this family. In previous studies we generated a computational model of the Leishmania donovani nucleoside transporter 1.1 (LdNT1.1) that captured this permease in the outward-closed conformation, and we identified the extracellular gate. In the present study we have modeled the inward-closed conformation of LdNT1.1 using the crystal structure of the Escherichia coli fucose transporter FucP and have identified four transmembrane helices whose ends close to form a predicted intracellular gate. We have tested this prediction by site-directed mutagenesis of relevant helix residues and by cross-linking of introduced cysteine pairs. The results are consistent with the predictions of the computational model and suggest that a similarly constituted gate operates in other members of the equilibrative nucleoside transporter family.  相似文献   

12.
We stably transfected the cloned human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2) into nucleoside transporter-deficient PK15NTD cells. Although hENT1 and hENT2 are predicted to be 50-kDa proteins, hENT1 runs as 40 kDa and hENT2 migrates as 50 and 47 kDa on SDS-polyacrylamide gel electrophoresis. Peptide N-glycosidase F and endoglycosidase H deglycosylate hENT1 to 37 kDa and hENT2 to 45 kDa. With hENT1 being more sensitive, there is a 7000-fold and 71-fold difference in sensitivity to nitrobenzylthioinosine (NBMPR) (IC(50), 0.4 +/- 0.1 nM versus 2.8 +/- 0.3 microM) and dipyridamole (IC(50), 5.0 +/- 0.9 nM versus 356 +/- 13 nM), respectively. [(3)H]NBMPR binds to ENT1 cells with a high affinity K(d) of 0.377 +/- 0.098 nM, and each ENT1 cell has 34,000 transporters with a turnover number of 46 molecules/s for uridine. Although both transporters are broadly selective, hENT2 is a generally low affinity nucleoside transporter with 2.6-, 2.8-, 7. 7-, and 19.3-fold lower affinity than hENT1 for thymidine, adenosine, cytidine, and guanosine, respectively. In contrast, the affinity of hENT2 for inosine is 4-fold higher than hENT1. The nucleobase hypoxanthine inhibits [(3)H]uridine uptake by hENT2 but has minimal effect on hENT1. Taken together, these results suggest that hENT2 might be important in transporting adenosine and its metabolites (inosine and hypoxanthine) in tissues such as skeletal muscle where ENT2 is predominantly expressed.  相似文献   

13.
14.
Handa M  Choi DS  Caldeiro RM  Messing RO  Gordon AS  Diamond I 《Gene》2001,262(1-2):301-307
We have isolated a mouse cDNA clone corresponding to a novel isoform of the NBMPR-sensitive equilibrative nucleoside transporter (ENT1). The cDNA contains a 6 bp deletion in the open reading frame that changes the amino acid composition in a consensus casein kinase II (CKII) phosphorylation site at Ser-254. The clone containing Ser-254 is termed mENT1.1 and the clone lacking the serine termed mENT1.2. The deduced amino acid sequence of mENT1.1 corresponds to the previously cloned human and rat ENT1 proteins at Ser-254. Tissue distribution studies show that mRNA for both ENT1 isoforms are ubiquitously co-expressed in mouse. Analysis of genomic DNA corresponding to mouse ENT1 indicates the isoforms can be produced by alternative splicing at the end of exon 7. CEM/C19 cells stably expressing mENT1.1 and mENT1.2 show similar dose response curves for NBMPR and dipyridamole inhibition of [(3)H]adenosine uptake as well as exhibiting comparable selectivity for both purine and pyrimidine nucleosides but not the corresponding nucleobases.  相似文献   

15.
Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light-dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders.  相似文献   

16.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

17.
Nucleoside transporters are integral membrane glycoproteins that play critical roles in physiological nucleoside and nucleobase fluxes, and influence the efficacy of many nucleoside chemotherapy drugs. Fluorescent reporter ligands/substrates have been shown to be useful in the analysis of nucleoside transporter (NT) protein expression and discovery of new NT inhibitors. In this study, we have developed a novel dipyridamole (DP)-based equilibrative nucleoside transporter 1 (ENT1) fluorescent probe. The potent ENT1 and ENT2 inhibitor analogue of dipyridamole, 2,6-bis(diethanolamino)-4,8-diheptamethyleneiminopyrimido[5,4-d]pyrimidine (4, 8MDP), was modified to replace one β-hydroxyethyl group of the amino substituent at the 2-position with a β-aminoethyl group and then conjugated through the amino group to 6-(fluorescein-5-carboxamido)hexanoyl moiety to obtain a new fluorescent molecule, 2-diethanolamino-4,8-diheptamethyleneimino-2-(N-aminoethyl-N-ethanolamino)-6-(N,N-diethanolamino)pyrimido[5,4-d]pyrimidine-fluorescein conjugate, designated 8MDP-fluorescein (8MDP-fluor, 6). The binding affinities of 8MDP-fluor at ENT1 and ENT2 are reflected by the uridine uptake inhibitory K(i) values of 52.1 nM and 285 nM, respectively. 8MDP-fluor was successfully demonstrated to be a flow cytometric probe for ENT1 comparable to the nitrobenzylmercaptopurine riboside (NBMPR) analogue ENT1 fluorescent probe SAENTA-X8-fluorescein (SAENTA-fluor, 1). This is the first reported dipyridamole-based ENT1 fluorescent probe, which adds a novel tool for probing ENT1, and possibly ENT2.  相似文献   

18.
Streptococcus mutans has a significant number of transporters of the ATP-binding cassette (ABC) superfamily. Members of this superfamily are involved in the translocation of a diverse range of molecules across membranes. However, the functions of many of these members remain unknown. We have investigated the role of the single S. mutans representative of the second subfamily of carbohydrate uptake transporters (CUT2) of the ABC superfamily. The genetic context of genes encoding this transporter indicates that it may have a role in ribonucleoside scavenging. Inactivation of rnsA (ATPase) or rnsB (solute binding protein) resulted in strains resistant to 5-fluorocytidine and 5-fluorouridine (toxic ribonucleoside analogues). As other ribonucleosides including cytidine, uridine, adenosine, 2-deoxyuridine, and 2-deoxycytidine protected S. mutans from 5-fluorocytidine and 5-fluorouridine toxicity, it is likely that this transporter is involved in the uptake of these molecules. Indeed, the rnsA and rnsB mutants were unable to transport [2-(14)C]cytidine or [2-(14)C]uridine and had significantly reduced [8-(14)C]adenosine uptake rates. Characterization of this transporter in wild-type S. mutans indicates that it is a high-affinity (K(m) = 1 to 2 muM) transporter of cytidine, uridine, and adenosine. The inhibition of [(14)C]cytidine uptake by a range of structurally related molecules indicates that the CUT2 transporter is involved in the uptake of most ribonucleosides, including 2-deoxyribonucleosides, but not ribose or nucleobases. The characterization of this permease has directly shown for the first time that an ABC transporter is involved in the uptake of ribonucleosides and extends the range of substrates known to be transported by members of the ABC transporter superfamily.  相似文献   

19.
Functional studies have implicated cysteines in the interaction of ligands with the ENT1 nucleoside transporter. To better define these interactions, N-ethylmaleimide (NEM) and p-chloromercuribenzylsulfonate (pCMBS) were tested for their effects on ligand interactions with the [(3)H] nitrobenzylthioinosine (NBMPR) binding site of the ENT1 transporters of mouse Ehrlich ascites cells and human erythrocytes. NEM had biphasic, concentration-dependent effects on NBMPR binding to intact Ehrlich cells, plasma membranes, and detergent-solubilized membranes, with about 35% of the binding activity being relatively insensitive to NEM inhibition. NBMPR binding to human erythrocyte membranes also displayed heterogeneity in that about 33% of the NBMPR binding sites remained, albeit with lower affinity for NBMPR, even after treatment with NEM at concentrations in excess of 1 mM. However, unlike that seen for Ehrlich cells, no "reversal" in NBMPR binding to human erythrocyte membranes was observed at the higher concentrations of NEM. pCMBS inhibited 100% of the NBMPR binding to both Ehrlich cell and human erythrocyte membranes, but had no effect on the binding of NBMPR to intact cells. The effects of NEM on NBMPR binding could be prevented by coincubation of membranes with nonradiolabeled NBMPR, adenosine, or uridine. Treatment with NEM and pCMBS also decreased the affinity of other nucleoside transport inhibitors for the NBMPR binding site, but enhanced the affinities of nucleoside substrates. These data support the existence of at least two populations of ENT1 in both erythrocyte and Ehrlich cell membranes with differential sensitivities to NEM. The interaction of NEM with the mouse ENT1 protein may also involve additional sulphydryl groups not present in the human ENT1.  相似文献   

20.
We previously reported that the human Na(+)/nucleoside transporter pyrimidine-preferring 1 (hCNT1) is electrogenic and transports gemcitabine and 5'-deoxy-5-fluorouridine, a precursor of the active drug 5-fluorouracil. Nevertheless, a complete electrophysiological characterization of the basic properties of hCNT1-mediated translocation has not been performed yet, and the exact role of adenosine in hCNT1 function has not been addressed either. In the present work we have used the two-electrode voltage clamp technique to investigate hCNT1 transport mechanism and study the kinetic properties of adenosine as an inhibitor of hCNT1. We show that hCNT1 exhibits presteady-state currents that disappear upon the addition of adenosine or uridine. Adenosine, a purine nucleoside described as a substrate of the pyrimidine-preferring transporters, is not a substrate of hCNT1 but a high affinity blocker able to inhibit uridine-induced inward currents, the Na(+)-leak currents, and the presteady-state currents, with a K(i) of 6.5 microM. The kinetic parameters for uridine, gemcitabine, and 5'-deoxy-5-fluorouridine were studied as a function of membrane potential; at -50 mV, K(0.5) was 37, 18, and 245 microM, respectively, and remained voltage-independent. I(max) for gemcitabine was voltage-independent and accounts for approximately 40% that for uridine at -50 mV. Maximal current for 5'-DFUR was voltage-dependent and was approximately 150% that for uridine at all membrane potentials. K(0.5)(Na(+)) for Na(+) was voltage-independent at hyperpolarized membrane potentials (1.2 mM at -50 mV), whereas I(max)(Na(+)) was voltage-dependent, increasing 2-fold from -50 to -150 mV. Direct measurements of (3)H-nucleoside or (22)Na fluxes with the charge-associated revealed a ratio of two positive inward charges per nucleoside and one Na(+) per positive inward charge, suggesting a stoichiometry of two Na(+)/nucleoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号