首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The marked decrease in blood non-esterified fatty acids and ketone bodies after vasopressin infusion into starved rats [Rofe & Williamson (1983) Biochem. J. 212, 231-239] was investigated. Vasopressin did not inhibit lipolysis in isolated rat adipocytes. The metabolic effects in vivo were still present after pretreatment of rats with indomethacin, indicating that the effect is not secondary to the release of prostaglandins. Vasopressin significantly decreased blood flow through the retroperitoneal, epididymal and mesenteric fat depots, by 80%, 76% and 46% respectively. The specific haemodynamic effect of vasopressin on adipose tissue is considered to be the primary cause of the major metabolic changes seen in the starved rat.  相似文献   

2.
Metabolic effects of vasopressin, glucagan and adrenalin were compared, in intact rats, especially in regard to time courses of effects. Hyperglycaemia was transient in response to vasopressin, prolonged following adrenalin, and, suprisingly, was not discernible after glucagon, except in response to a very large dose. Vasopressin decreased and adrenalin increased, the plasma free fatty acid concentration; both hormones decreased the triacylglycerol level. Muscle glycogen concentrations, measured in heart, diaphragm and skeletal muscle, exhibited small changes, with complex time courses, following hormone administration. Vasopressin brought about a rapid but transient activation of heaptic glycogen phosphorylase which resembled that due to adrenalin. The activation by glucagon of phosphorylase was greater and more prolonged, despite the absence of hyperglycaemia. In response to vasopressin, there was in increase in plasma insulin. Incorporation of 14C from [14C]glucose into glycogen or fatty acids was not influenced by vasopressin. Taken together, these results may be explained by rapid metabolic action of vasopressin on hepatic glycogenolysis, whereas adrenalin has multiple prolonged actions.  相似文献   

3.
The NADPH is one of the cofactors in ethanol metabolism. The aim of the study was to investigate the effect of ethanol on a NADPH generating enzyme (G6P-DH) and on some metabolic parameters of the liver. After a 2-day starvation period rats were fed a lipid free diet for three days. During this refeeding period the animals were divided into three groups; they received a single daily dose of 4 g per kg b.w. ethanol, isocaloric aqueous glucose solution or water by gastric tube. In response to ethanol the activity of hepatic G6P-DH decreased. The amount of triglyceride remained unchanged, certain changes occurred in the fatty acid composition of total lipid. The liver glycogen content was elevated. In female rats treated with ethanol the activity of glucose-6-phosphatase increased.  相似文献   

4.
The metabolic effects of sodium dichloroacetate in the starved rat   总被引:1,自引:10,他引:1       下载免费PDF全文
1. Sodium dichloroacetate (300mg/kg body wt. per h) was infused in 24h-starved rats for 4h. 2. Blood glucose decreased significantly, an effect that had previously only been noted in diabetic animals 3. Plasma insulin concentration decreased by 63%; blood lactate and pyruvate concentrations decreased by 50 and 33%, whereas concentrations of 3-hydroxybutyrate and acetoacetate increased by 81 and 73% respectively. 4. Livers were freeze-clamped at the end of the 4h infusion. There were significant decreases in hepatic [glucose], [glucose 6-phosphate], [2-phosphoglycerate], the [lactate]/[pyruvate] ratio, [citrate] and [malate], and also [alanine], [glutamate] and [glutamine], suggesting a diminished supply of gluconeogenic substrates. 5. Animals subjected to a functional hepatectomy at the end of 2h infusions showed no difference in blood-glucose disappearance but a highly significant decrease in the rate of accumulation of lactate, pyruvate, glycerol and alanine, compared with control animals. Dichloroacetate decreased ketone-body clearance. 6. After functional hepatectomy an increase in glutamine accumulation appeared to compensate for the decrease in alanine accumulation. 7. It is concluded that dichloroacetate causes hypoglycaemia by decreasing the net release of gluconeogenic precursors from extrahepatic tissues while inhibiting peripheral ketone-body uptake. 8. These findings are consistent with the activation of pyruvate dehydrogenase (EC 1.2.4.1) in rat muscle by dichloroacetate previously described by Whitehouse & Randle (1973).  相似文献   

5.
Unniappan S  Speck M  Kieffer TJ 《Peptides》2008,29(8):1354-1361
Obestatin is purported to be a peptide hormone encoded in preproghrelin. We studied the metabolic effects of continuous infusion of obestatin via subcutaneously implanted osmotic mini-pumps. Administration of up to 500nmol/kg body weight/day obestatin did not change 24h cumulative food intake or body weight in rats. Similarly, no effects were observed when obestatin was infused at 1000nmol/kg body weight/day for seven days. This dose of obestatin infused during a 24h fast did not alter weight loss, suggesting that obestatin has no effect on energy expenditure, and this dose did not alter glucose or insulin responses during an IPGTT. Obestatin was originally proposed to interact with GPR39 and subsequently the receptor for GLP-1. While both receptors are expressed in pancreatic islets, incubation with obestatin did not alter insulin release from islets in vitro. Moreover, obestatin did not bind to INS-1 beta-cells or HEK cells overexpressing GLP-1 receptors or displace GLP-1 binding to these cells. Our findings do not support the concept that obestatin is a hormone with metabolic actions.  相似文献   

6.
Metabolic effects of vasopressin, glucagon and adrenalin were compared, in intact rats, especially in regard to time courses of effects.Hyperglycaemia was transient in response to vasopressin, prolonged following adrenalin, and, surprisingly, was not discernible after glucagon, except in response to a very large dose. Vasopressin decreased and adrenalin increased, the plasma free fatty acid concentration; both hormones decreased the triacylglycerol level. Muscle glycogen concentrations, measured in heart, diaphragm and skeletal muscle, exhibited small changes, with complex time courses, following hormone administration. Vasopressin brought about a rapid but transient activation of hepatic glycogen phosphorylase which resembled that due to adrenalin. The activation by glucagon of phosphorylase was greater and more prolonged, despite the absence of hyperglycaemia. In response to vasopressin, there was an increase in plasma insulin. Incorporation of 14C from [14C] glucose into glycogen or fatty acids was not influenced by vasopressin. Taken together, these results may be explained by rapid metabolic action of vasopressin on hepatic glycogenolysis, whereas adrenalin has multiple prolonged actions.  相似文献   

7.
1. The aim of this paper was to study the in vivo skeletal muscle L-proline related to its destination to other key tissues such as liver and intestine as well as to give some insight into the role of blood cells in proline handling. 2. L-U-[14C]Proline was injected intramuscularly and following by sampling of blood, liver, intestine and contralateral muscle at 20 and 30 min after injection. 3. The distribution of radioactivity between blood cells and plasma and in total and individual amino acids, protein and glycogen fractions was determined in the above tissues. 4. The pattern of well fed rats was compared with those submitted to 24-hr complete starvation. 5. During starvation a minor degree of proline oxidation occurs. 6. The main destruction of proline in the liver seem to be the synthesis of proteins. 7. The radioactivity recovered in the blood proline fraction of starved rats is twice that of the fed rats and that it could be attributed mainly to plasma protein. 8. We have obtained in vivo evidence for the role of erythrocyte in the interorgan proline transport.  相似文献   

8.
Autoactivation of C1r is closely correlated with an irreversible increase of its intrinsic fluorescence. The activation and the fluorescence increase of C1r are accelerated on addition of activated C1r. Ca2+, di-isopropyl phosphorofluoridate and C1 inhibitor, which all inhibit, although to different extents, C1r activation, inhibit in parallel the fluorescence increase. C1r activation is blocked at pH 4.0-5.0, whereas it is accelerated at pH 10.5; under the same conditions the fluorescence increase shows parallel effects. No such fluorescence increase is observed during C1s activation by trace amounts of C1r. Far-u.v. circular-dichroism spectra of C1r indicate 73 and 78% of unordered form in both the proenzyme and the activated species respectively. The slight changes observed on activation are not restricted to C1r, as comparable results are obtained for proenzyme and activated C1s. C1r activation appears thus to involve structural changes leading to an 'activated state' distinct from the 'proenzyme state'. Monoclonal antibody to activated C1r is poorly reactive with proenzyme C1r, a finding that also supports this hypothesis.  相似文献   

9.
We compared effects of perfusion of norepinephrine (NE, 10(-9) mol l-1 and of unchanged Krebs-Henseleit solution on the cardiac response to bolus injection of arginine vasopressin (AVP, 2 ng). 14 isolated rat working heart preparations were used in a balanced cross-over design. Coronary flow, oxygen consumption and extraction, heart rate and total flow were continuously recorded. The concentration of NE was below that exerting per se systematic influences on cardiac activity. However, NE changed the cardiac response to AVP: (1) the AVP-induced reduction in coronary flow was greater during NE (mean: 41.7%) than vehicle perfusion (30.5%, P less than 0.005. (2) The AVP-induced decrease in oxygen consumption was stronger on top of the NE (41.5%) than vehicle perfusion (33.6%, P less than 0.005). (3) Following AVP, oxygen extraction during NE was increased compared to oxygen extraction during vehicle perfusion (3.61 +/- 0.03 vs. 3.46 +/- 0.02 microliters O2 ml-1 g-1, P less than 0.005). Results support the view of a potentiating role of catecholamines for direct cardiovascular effects of AVP.  相似文献   

10.
The flavonolignan silibinin, which is a mixture of two diastereoisomers, silybin A and silybin B, is a component of the extract obtained from the fruit and seeds of the variegated milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), known as silymarin. Among the therapeutic properties credited to silibinin, its antihyperglycaemic action has been extensively explored. Silibinin is structurally related to the flavonoids quercetin and fisetin, which have been previously demonstrated to be very active on liver metabolic processes related to glycaemic regulation. The aim of the present work was to investigate the effects of silibinin on metabolic pathways responsible for the maintenance of glycaemia, particularly glycogenolysis and gluconeogenesis, in the perfused rat liver. The activities of some key enzymes in these pathways and on parameters of energy metabolism in isolated mitochondria were also examined. At a concentration range of 50-300μM, silibinin inhibited gluconeogenesis in the fasted condition and inhibited glycogenolysis and glycolysis in the fed condition. The mechanisms by which silibinin exerted these actions were multiple and complex. It inhibited the activity of glucose 6-phosphatase, inhibited the pyruvate carrier, and reduced the efficiency of mitochondrial energy transduction. It can also act by reducing the supply of NADH for gluconeogenesis and mitochondria through its pro-oxidative actions. In general, the effects and the potency of silibinin were similar to those of quercetin and fisetin. However, silibinin exerted some distinct effects such as the inhibitory effect on oxygen consumption in the fed condition and a change in the energy status of the perfused livers. It can be concluded that the effects of silibinin on liver glucose metabolism may explain its antihyperglycaemic property. However, this effect was, in part, secondary to impairment in cellular energy metabolism, a finding that should be considered in its therapeutic usage.  相似文献   

11.
12.
13.
An incremental insulin infusion technique to assess insulin action at physiological circulating levels in diabetic man is described. Insulin was infused during sequential one hour periods at rates of 0.01, 0.05 and 0.10 u/kg/h. Serum free insulin concentrations had reached a plateau by the second 30 minutes of each infusion period. Blood glucose concentrations fell at a similar rate during the two lower rates of insulin infusion, but the fall was significantly greater with the highest insulin infusion. Glucose production and utilisation were measured isotopically using a 3-3H glucose infusion technique. Glucose production was inhibited with the lowest insulin infusion rate and a marked increase in glucose metabolic clearance rate occurred with the highest insulin infusion. Key intermediary metabolites were measured and blood glycerol, total ketone bodies, and plasma non-esterified fatty acids fell with the lowest insulin infusion rate. It is concluded that this technique allows identification of the effect of insulin upon different metabolic processes.  相似文献   

14.
The effects of acetaminophen on the metabolism of the isolated perfused rat liver were investigated. The following results were obtained: (1) Acetaminophen increased glucose release and glycolysis from endogenous glycogen (glycogenolysis). (2) Oxygen uptake, gluconeogenesis from either pyruvate or fructose and glycogen synthesis were inhibited. (3) In isolated rat liver mitochondria acetaminophen decreased state III and state IV respiration; it also decreased the ADP/O ratio and the respiratory control ratio. (4) The action of acetaminophen on glycogenolysis was not affected by N-acetylcysteine; this compound, however, increased glycogen synthesis. (5) The effects of acetaminophen are reversible. It was concluded that glycogen depletion by acetaminophen can be produced by two mechanisms. The first, as previously demonstrated by several workers, depends on irreversible binding of a reactive metabolite. The second, however, is reversible and depends primarily on an inhibition of mitochondrial energy metabolism.  相似文献   

15.
Experiments were performed on conscious, male Sprague-Dawley rats to determine whether cyclooxygenase inhibition affects the pressor response to exogenous vasopressin. The rise in arterial blood pressure was tested in response to 1.0, 2.5, 5.0, and 12.5 mU synthetic arginine vasopressin both before and following cyclooxygenase inhibition with either meclofenamate or the structurally dissimilar inhibitor ibuprofen. In addition, time control experiments were also performed where only the saline vehicle for the drugs was administered. In all animals tested, the increase in arterial pressure in response to the highest three concentrations of vasopressin was greater following cyclooxygenase inhibition than before, while the saline vehicle had no effect. The baroreceptor-mediated bradycardia accompanying the rise in blood pressure was variable, but unaffected by meclofenamate or ibuprofen. It is concluded that vasodilator prostaglandins are released in response to pressor levels of vasopressin, which act to modulate the pressor response of the peptide.  相似文献   

16.
Metabolic effects of L-carnitine on prepubertal rat Sertoli cells.   总被引:5,自引:0,他引:5  
The role of carnitine on Sertoli cell metabolism was investigated. Carnitine effects on Sertoli cell lipid metabolism were evaluated by measuring the intracellular levels of non-esterified fatty acids (NEFA) and ketone bodies. The concentration of NEFA in Sertoli cell cultured in the presence of carnitine is significantly reduced as compared to control, while, no significant changes were observed in the concentration of ketone bodies. The functional parameters evaluated to assess the influence of carnitine on Sertoli cell carbohydrate metabolism, i.e., lactate and pyruvate production, lactate dehydrogenase activity and hexose transport, were all significantly increased following carnitine in vitro supplementation. Thus, carnitine appears to drive Sertoli cell intermediary metabolism in an intimately interrelated way, stimulating both fatty acid breakdown and glycolysis. Our results indicate that Sertoli cells are a possible target for a widespread metabolic action of carnitine and strongly support the involvement of carnitine in the regulation of Sertoli cell functions which are related with germ cell "nutrition", convincingly suggesting a direct influence of the compound at testis level.  相似文献   

17.
18.
19.
The effects of intraventricular administration of lysine-vasopressin on pain sensitivity in the rat were determined in the tail-flick test. Vasopressin (16–100 μg) was found to induce potent and dose-dependent antinociceptive actions, lasting up to one hour. An additional experiment demonstrated that analgesia induced by vasopressin was not blocked by naloxone, suggesting that this analgesia is independent of opiate receptor systems. Vasopressin was also found to be equally effective in elevating tail-flick latency after systemic administration. These results, together with others, suggest a possible role of vasopressin systems in the regulation of pain sensitivity.  相似文献   

20.
The metabolic effects of the hypoglycaemic agent pent-4-enoate were studied in isolated, beating or potassium-arrested rat hearts. The addition of 0.8mM-pent-4-enoate to the perfusion fluid increased O2 consumption by 76% in the arrested heart and by 14% in the beating heart; the concentration ratio of phosphocreatine/creatine increase concomitantly by 47% and 27% respectively. Perfusion of the heart with pent-4-enoate resulted in a 30-fold increase in the concentration of the pool of tricarboxylic acid-cycle intermediates in the tissue, about 90% of this increase being due to malate. The sum of the concentrations of the myocardial free amino acids remained virtually unchanged during the accumulation of the tricarboxylic acid-cycle intermediates. It was concluded that pent-4-enoate can be effectively metabolized in the myocardium and that its metabolism probably proceeds via propionyl-CoA, since pent-4-enoate reproduces many of the metabolic characteristics of propionate in the cardiac muscle. The accumulation of the tricarboxylic acid-cycle intermediates is probably due to carboxylation of propionyl-CoA. The response pattern of the metabolite concentrations in the cardiac muscle is quite different from that in the liver, in which decrease of the concentrations of the tricarboxylic acid-cycle intermediates has been observed previously [Williamson, Rostand & Peterson (1970) J. Biol. Chem. 245, 3242-3251].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号