首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entry and fusion of human parainfluenza virus type 3 (HPF3) requires interaction of the viral hemagglutinin-neuraminidase (HN) glycoprotein with its sialic acid receptor. 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (4-GU-DANA; zanamivir), a sialic acid transition-state analog designed to fit the influenza virus neuraminidase catalytic site, possesses antiviral activity at nanomolar concentrations in vitro. We have shown previously that 4-GU-DANA also inhibits both HN-mediated binding of HPF3 to host cell receptors and HN's neuraminidase activity. In the present study, a 4-GU-DANA-resistant HPF3 virus variant (ZM1) was generated by serial passage in the presence of 4-GU-DANA. ZM1 exhibited a markedly fusogenic plaque morphology and harbored two HN gene mutations resulting in two amino acid alterations, T193I and I567V. Another HPF3 variant studied in parallel, C-0, shared an alteration at T193 and exhibited similar plaque morphology but was not resistant to 4-GU-DANA. Neuraminidase assays revealed a 15-fold reduction in 4-GU-DANA sensitivity for ZM1 relative to the wild type (WT) and C-0. The ability of ZM1 to bind sialic acid receptors was inhibited 10-fold less than for both WT and C-0 in the presence of 1 mM 4-GU-DANA. ZM1 also retained infectivity at 15-fold-higher concentrations of 4-GU-DANA than WT and C-0. A single amino acid alteration at HN residue 567 confers these 4-GU-DANA-resistant properties. An understanding of ZM1 and other escape variants provides insight into the effects of this small molecule on HN function as well as the role of the HN glycoprotein in HPF3 pathogenesis.  相似文献   

2.
The envelope of human parainfluenza virus type 3 (HPF3) contains two viral glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). HN, which is responsible for receptor attachment and for promoting F-mediated fusion, also possesses neuraminidase (receptor-destroying) activity. We reported previously that 4-guanidino-neu5Ac2en (4-GU-DANA) and related sialic acid-based inhibitors of HPF3 neuraminidase activity also inhibit HN-mediated receptor binding and fusion processes not involving neuraminidase activity. We have now examined this mechanism, as well as neuraminidase's role in the viral life cycle, using a neuraminidase-deficient HPF3 variant (C28a) and stable cell lines expressing C28a or wild-type (wt) HN. C28a, which has a wt F sequence and two point mutations in the HN gene corresponding to two amino acid changes in the HN protein, is the first HPF3 variant with insignificant neuraminidase activity. Cells expressing C28a HN did not bind erythrocytes at 4 degrees C unless pretreated with neuraminidase, but no such pretreatment was required for hemadsorption activity (HAD) at 22 or 37 degrees C. HAD was blocked by 4-GU-DANA, attesting to the ability of this compound to inhibit HN's receptor-binding activity. C28a or wt plaque enlargement, a process that involves cell-cell fusion and does not depend on virion release, is diminished by the presence of 4-GU-DANA, confirming the inhibitory effect of 4-GU-DANA on the fusogenic function of C28a HN. In C28a-infected cell monolayers, virion release and thus multicycle replication are severely restricted. This defect was corrected by supplementation of exogenous neuraminidase and also by the addition of 4-GU-DANA; neuraminidase destroys the receptors whereby newly formed C28a virions would remain attached to the cell surface, whereas 4-GU-DANA prevents the attachment itself, obviating the need for receptor cleavage. In accord with the ability of 4-GU-DANA to prevent attachment, the neuraminidase inhibitory effect of 4-GU-DANA on wt HPF3 did not diminish virion release into the medium. Thus, it is by inhibition of viral entry and syncytium formation that sialic acid analogs like 4-GU-DANA may counteract wt HPF3 infection.  相似文献   

3.
Zanamivir (4-guanidino-Neu5Ac2en [4-GU-DANA]) inhibits not only the neuraminidase activity but also the receptor interaction of the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN), blocking receptor binding and subsequent fusion promotion. All activities of the HPIV3 variant ZM1 HN (T193I/I567V) are less sensitive to 4-GU-DANA's effects. The T193I mutation in HN confers both increased receptor binding and increased neuraminidase activity, as well as reduced sensitivities of both activities to 4-GU-DANA inhibition, consistent with a single site on the HN molecule carrying out both catalysis and binding. We now provide evidence that the HPIV3 variant's resistance to receptor-binding inhibition by 4-GU-DANA is related to a reduced affinity of the HN receptor-binding site for this compound as well as to an increase in the avidity of HN for the receptor. Newcastle disease virus (NDV) HN and HPIV3 HN respond differently to inhibition in ways that suggest a fundamental distinction between them. NDV HN-receptor binding is less sensitive than HPIV3 HN-receptor binding to 4-GU-DANA, while its neuraminidase activity is highly sensitive. Both HPIV3 and NDV HNs are sensitive to receptor-binding inhibition by the smaller molecule DANA. However, for NDV HN, some receptor binding cannot be inhibited. These data are consistent with the presence in NDV HN of a second receptor-binding site that is devoid of enzyme activity and has a negligible, if any, affinity for 4-GU-DANA. Avidity for the receptor contributes to resistance by allowing the receptor to compete effectively with inhibitors for interaction with HN, while the further determinant of resistance is the reduced binding of the inhibitor molecule to the binding pocket on HN. Based upon our data and recent three-dimensional structural information on the HPIV3 and NDV HNs, we propose mechanisms for the observed sensitivity and resistance of HN to receptor-binding inhibition and discuss the implications of these mechanisms for the distribution of HN functions.  相似文献   

4.
In order to examine functions of the hemagglutinin-neuraminidase (HN) protein that quantitatively influence fusion promotion, human parainfluenza virus 3 (HPIV3) variants with alterations in HN were studied. The variant HNs have mutations that affect either receptor binding avidity, neuraminidase activity, or fusion protein (F) activation. Neuraminidase activity was regulated by manipulation of temperature and pH. F activation was assessed by quantitating the irreversible binding of target erythrocytes (RBC) to HN/F-coexpressing cells in the presence of 4-GU-DANA (zanamivir) to release target cells bound only by HN-receptor interactions; the remaining, irreversibly bound target cells are retained via the fusion protein. In cells coexpressing wild-type (wt) or variant HNs with wt F, the fusion promotion capacity of HN was distinguished from target cell binding by measuring changes with time in the amounts of target RBC that were (i) reversibly bound by HN-receptor interaction (released only upon the addition of 4-GU-DANA), (ii) released by HN's neuraminidase, and (iii) irreversibly bound by F-insertion or fusion (F triggered). For wt HN, lowering the pH (to approach the optimum for HPIV3 neuraminidase) decreased F triggering via release of HN from its receptor. An HN variant with increased receptor binding avidity had F-triggering efficiency like that of wt HN at pH 8.0, but this efficiency was not decreased by lowering the pH to 5.7, which suggested that the variant HN's higher receptor binding activity counterbalanced the receptor dissociation promoted by increased neuraminidase activity. To dissect the specific contribution of neuraminidase to triggering, two variant HNs that are triggering-defective due to a mutation in the HN stalk were evaluated. One of these variants has, in addition, a mutation in the globular head that renders it neuraminidase dead, while the HN with the stalk mutation alone has 30% of wt neuraminidase. While the variant without neuraminidase activity triggered F effectively at 37 degrees C irrespective of pH, the variant possessing effective neuraminidase activity completely failed to activate F at pH 5.7 and was capable of only minimal triggering activity even at pH 8.0. These results demonstrate that neuraminidase activity impacts the extent of HPIV3-mediated fusion by releasing HN from contact with receptor. Any particular HN's competence to promote F-mediated fusion depends on the balance between its inherent F-triggering efficacy and its receptor-attachment regulatory functions (binding and receptor cleavage).  相似文献   

5.
4-GU-DANA (zanamivir) (as well as DANA and 4-AM-DANA) was found to inhibit the neuraminidase activity of human parainfluenza virus type 3 (HPF3). The viral neuraminidase activity is attributable to hemagglutinin-neuraminidase (HN), an envelope protein essential for viral attachment and for fusion mediated by the other envelope protein, F. While there is no evidence that HN's neuraminidase activity is essential for receptor binding and syncytium formation, we found that 4-GU-DANA prevented hemadsorption and fusion of persistently infected cells with uninfected cells. In plaque assays, 4-GU-DANA reduced the number (but not the area) of plaques if present only during the adsorption period and reduced plaque area (but not number) if added only after the 90-min adsorption period. 4-GU-DANA also reduced the area of plaques formed by a neuraminidase-deficient variant, confirming that its interference with cell-cell fusion is unrelated to inhibition of neuraminidase activity. The order-of-magnitude lower 50% inhibitory concentrations of 4-GU-DANA (and also DANA and 4-AM-DANA) for plaque area reduction and for inhibition in the fusion assay than for reducing plaque number or blocking hemadsorption indicate the particular efficacy of these sialic acid analogs in interfering with cell-cell fusion. In cell lines expressing influenza virus hemagglutinin (HA) as the only viral protein, we found that 4-GU-DANA had no effect on hemadsorption but did inhibit HA2b-red blood cell fusion, as judged by both lipid mixing and content mixing. Thus, 4-GU-DANA can interfere with both influenza virus- and HPF3-mediated fusion. The results indicate that (i) in HPF3, 4-GU-DANA and its analogs have an affinity not only for the neuraminidase active site of HN but also for sites important for receptor binding and cell fusion and (ii) sialic acid-based inhibitors of influenza virus neuraminidase can also exert a direct, negative effect on the fusogenic function of the other envelope protein, HA.  相似文献   

6.
Viral interference is characterized by the resistance of infected cells to infection by a challenge virus. Mechanisms of viral interference have not been characterized for human parainfluenza virus type 3 (HPF3), and the possible role of the neuraminidase (receptor-destroying) enzyme of the hemagglutinin-neuraminidase (HN) glycoprotein has not been assessed. To determine whether continual HN expression results in depletion of the viral receptors and thus prevents entry and cell fusion, we tested whether cells expressing wild-type HPF3 HN are resistant to viral infection. Stable expression of wild-type HN-green fluorescent protein (GFP) on cell membranes in different amounts allowed us to establish a correlation between the level of HN expression, the level of neuraminidase activity, and the level of protection from HPF3 infection. Cells with the highest levels of HN expression and neuraminidase activity on the cell surface were most resistant to infection by HPF3. To determine whether this resistance is attributable to the viral neuraminidase, we used a cloned variant HPF3 HN that has two amino acid alterations in HN leading to the loss of detectable neuraminidase activity. Cells expressing the neuraminidase-deficient variant HN-GFP were not protected from infection, despite expressing HN on their surface at levels even higher than the wild-type cell clones. Our results demonstrate that the HPF3 HN-mediated interference effect can be attributed to the presence of an active neuraminidase enzyme activity and provide the first definitive evidence that the mechanism for attachment interference by a paramyxovirus is attributable to the viral neuraminidase.  相似文献   

7.
The envelope of human parainfluenza virus type 3 (HPF3) contains two viral glycoproteins, the hemagglutinin-neuraminidase (HN) protein and the fusion (F) protein. In a previous study, highly fusogenic variant HPF3 viruses were isolated, including two, C-0 and C-22, that exhibit increased avidity for sialic acid receptors due to single amino acid changes in the HN protein and one, C-28, that has decreased neuraminidase activity relative to that of the wild type (wt) and is delayed in the release of virus particles into the supernatant fluid. These variants form very large plaques and destroy a cell monolayer more rapidly than does wt HPF3 in cell culture. These variant viruses allowed us to formulate hypotheses about the roles of HN in pathogenesis. We investigated the behavior of wt HPF3 and the three variant viruses in the cotton rat model. In the cotton rat, there was no delayed clearance of any of the variant viruses compared to that of the wt. The variant plaque morphology was preserved in vivo, and there was no reversion to the wt phenotype in the infected animals. In spite of a slight advantage of wt virus in viral titer, there were no differences in the severities of peribronchiolitis between wt viruses and the variants. However, there were marked differences in severities in alveolitis and interstitial pneumonitis when each of the three variants was compared to the wt, with the variants causing enhanced disease. Thus, despite similar or lower viral titers and similar clearance rates, the variants caused more extensive disease in the lung. The results show that mutations in HN conferring altered fusion properties in cell culture also confer striking differences in the ability of HPF3 to cause extensive disease in the cotton rat lung and that this effect is dissociated from any effect on viral replication.  相似文献   

8.
Paramyxoviruses, including the childhood respiratory pathogen human parainfluenza virus type 3 (HPIV3), possess an envelope protein hemagglutinin-neuraminidase (HN) that has receptor-cleaving (neuraminidase), as well as receptor-binding, activity. HN is a type II transmembrane glycoprotein, present on the surface of the virus as a tetramer composed of two dimers. HN is also essential for activating the fusion protein (F) to mediate merger of the viral envelope with the host cell membrane. This initial step of viral entry occurs at the host cell surface at neutral pH. The HN molecule carries out these three different critical activities at specific points in the process of viral entry, and understanding the regulation of these activities is key for the design of strategies that block infection. One bifunctional site (site I) on the HN of HPIV3 possesses both receptor binding and neuraminidase activities, and we recently obtained experimental evidence for a second receptor binding site (site II) on HPIV3 HN. Mutation of HN at specific residues at this site, which is next to the HN dimer interface, confers enhanced fusion properties, without affecting neuraminidase activity or receptor binding at neutral pH. We now demonstrate that mutations at this site II, as well as at site I, confer pH dependence on HN's receptor avidity. These mutations permit pH to modulate the binding and fusion processes of the virus, potentially providing regulation at specific stages of the viral life cycle.  相似文献   

9.
The ability of enveloped viruses to cause disease depends on their ability to enter the host cell via membrane fusion events. An understanding of these early events in infection, crucial for the design of methods of blocking infection, is needed for viruses that mediate membrane fusion at neutral pH, such as paramyxoviruses and human immunodeficiency virus. Sialic acid is the receptor for the human parainfluenza virus type 3 (HPF3) hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. In order for the fusion protein (F) of HPF3 to promote membrane fusion, the HN must interact with its receptor. In the present report, two variants of HPF3 with increased fusion-promoting phenotypes were selected and used to study the function of the HN glycoprotein in membrane fusion. Increased fusogenicity correlated with single amino acid changes in the HN protein that resulted in increased binding of the variant viruses to the sialic acid receptor. These results suggest that the avidity of binding of the HN protein to its receptor regulates the level of F protein-mediated fusion and begin to define one role of the receptor-binding protein of a paramyxovirus in the membrane fusion process.  相似文献   

10.
For human parainfluenza virus type 3 and many other paramyxoviruses, membrane fusion mediated by the fusion protein (F) has a stringent requirement for the presence of the homotypic hemagglutinin-neuraminidase protein (HN). With the goal of gaining further insight into the role of HN in the fusion process, we developed a simple method for quantitative comparison of the ability of wild-type and variant HNs to activate F. In this method, HN/F-coexpressing cells with red blood cells (RBC) bound to them at 4 degrees C are transferred to 22 degrees C, and at different times after transfer 4-guanidino-neu5Ac2en (4-GU-DANA) is added; this inhibitor of the HN-receptor interaction then releases all reversibly bound RBC but not those in which F insertion in the target membrane or fusion has occurred. Thus, the amount of irreversibly bound (nonreleased) RBC provides a measure of F activation, and the use of fluorescently labeled RBC permits microscopic assessment of the extent to which F insertion has progressed to fusion. We studied two neuraminidase-deficient HN variants, C28a, which has two mutations, P111S and D216N, and C28, which possesses the D216N mutation only. C28a but not C28 exhibits a slow fusion phenotype, although determination of the HNs' receptor-binding avidity (with our sensitive method, employing RBC with different degrees of receptor depletion) showed that the receptor-binding avidity of C28a or C28 HN was not lower than that of the wild type. The F activation assay, however, revealed fusion-triggering defects in C28a HN. After 10 and also 20 min at 22 degrees C, irreversible RBC binding was significantly less for cells coexpressing wild-type F with C28a HN than for cells coexpressing wild-type F with wild-type HN. In addition, F insertion progressed to fusion more slowly in the case of C28a HN-expressing cells than of wild-type HN-expressing cells. Identical defects were found for P111S HN, whereas for C28 HN, representing the 216 mutation of C28a, F activation and fusion were as rapid as for wild-type HN. The diminished fusion promotion capacity of C28a HN is therefore attributable to P111S, a mutation in the stalk region of the molecule that causes no decrease in receptor-binding avidity. C28a HN is the first parainfluenza virus variant found so far to be specifically defective in HN's F-triggering and fusion promotion functions and may contribute to our understanding of transmission of the activating signal from HN to F.  相似文献   

11.
Mahon PJ  Mirza AM  Iorio RM 《Journal of virology》2011,85(22):12079-12082
Newcastle disease virus (NDV)-induced membrane fusion requires an interaction between the hemagglutinin-neuraminidase (HN) attachment and the fusion (F) proteins, triggered by HN's binding to receptors. NDV HN has two sialic acid binding sites: site I, which also mediates neuraminidase activity, and site II, which straddles the membrane-distal end of the dimer interface. By characterizing the effect on receptor binding avidity and F-interactive capability of HN dimer interface mutations, we present evidence consistent with (i) receptor engagement by site I triggering the interaction with F and (ii) site II functioning to maintain high-avidity receptor binding during the fusion process.  相似文献   

12.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three different activities: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. These three discrete properties each affect the ability of HN to promote viral fusion and entry. For human parainfluenza type 3, one bifunctional site on HN can carry out both binding and neuraminidase, and the receptor mimic, zanamivir, impairs viral entry by blocking receptor binding. We report here that for Newcastle disease virus, the HN receptor avidity is increased by zanamivir, due to activation of a second site that has higher receptor avidity. Only certain receptor mimics effectively activate the second site (site II) via occupation of site I; yet without activation of this second site, binding is mediated entirely by site I. Computational modeling designed to complement the experimental approaches suggests that the potential for small molecule receptor mimics to activate site II, upon binding to site I, directly correlates with their predicted strengths of interaction with site I. Taken together, the experimental and computational data show that the molecules with the strongest interactions with site I-zanamivir and BCX 2798-lead to the activation of site II. The finding that site II, once activated, shows higher avidity for receptor than site I, suggests paradigms for further elucidating the regulation of HN's multiple functions in the viral life cycle.  相似文献   

13.
Announcement     
Recently we described a saturable, high-affinity binding site for vesicular stomatitis virus (VSV) on the surface of Vero cells that appears to mediate viral infectivity. To isolate this binding site, we have extracted Vero cells with the detergent, octyl-β-d-glucopyranoside. The dialyzed detergent extract specifically inhibits the saturable, high-affinity binding of 35S-methionine-labeled VSV to Vero cells. The inhibitory activity is resistant to protease, neuraminidase and heating to 100°C. It is soluble in chloroform-methanol and inactivated by phospholipase C, suggesting that it is a phospholipid. Of various puriifed lipids tested, only phosphatidylserine was capable of totally inhibiting the high-affinity binding of VSV. The half-maximal inhibitory concentration for phosphatidylserine was 1 μM. Phosphatidylserine also inhibited VSV plaque formation by 80%–90%; Herpes simplex virus plaque formation was unaffected. Centrifugation and electron microscopy studies have shown that phosphatidylserine-containing liposomes bind to VSV. The finding that phosphatidylserine directly binds to VSV and inhibits VSV attachment and infectivity suggests that plasma membrane phosphatidylserine could function as a binding site or portion of a binding site for VSV.  相似文献   

14.
Six hybridoma antibodies specific for the hemagglutinin-neuraminidase (HN) molecule of the parainfluenza type 1 virus strain 6/94 were used to demonstrate the existence of four distinct antigenic sites on the HN molecule. Three of the sites (A, B-C, D) are topologically nonoverlapping, because antibodies to these sites bind noncompetitively to the HN molecule. Two sites (B, C) are operationally nonoverlapping, because mutations in site B do not detectably modify the antigenic site C. Although antibodies to each site had similar potencies (activity per microgram of antibody) in hemagglutination inhibition tests, antibodies to sites A and C or D differed approximately 100-fold in their potency to neutralize virus. Also, the antibody to site A strongly inhibited viral neuraminidase activity, whereas antibodies to sites C and D (and to a lesser extent to site B) enhanced the neuraminidase activity. Lastly, only antibodies to sites C and D formed precipitates in Ouchterlony double diffusion against detergent-disrupted virus. Because all six anti-HN antibodies are of IgG isotype and exhibited similar avidity for HN, these findings suggest that the ability of anti-HN antibodies to interact with the viral protein and to alter viral functions is largely dependent on their fine specificity.  相似文献   

15.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three discrete activities that each affect the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. The interrelationship between the receptor binding and fusion-triggering functions of HN has not been clear. For human parainfluenza type 3 (HPIV3), one bifunctional site on HN can carry out both receptor binding and neuraminidase activities, and this site's receptor binding can be inhibited by the small receptor analog zanamivir. We now report experimental evidence, complemented by computational data, for a second receptor binding site near the HPIV3 HN dimer interface. This second binding site can mediate receptor binding even in the presence of zanamivir, and it differs from the second receptor binding site of the paramyxovirus Newcastle disease virus in its function and its relationship to the primary binding site. This second binding site of HPIV3 HN is involved in triggering F. We suggest that the two receptor binding sites on HPIV3 HN each contribute in distinct ways to virus-cell interaction; one is the multifunctional site that contains both binding and neuraminidase activities, and the other contains binding activity and also is involved in fusion promotion.  相似文献   

16.
Cells persistently infected with human parainfluenza virus type 3 (HPF3) exhibit a novel phenotype. They are completely resistant to fusion with each other but readily fuse with uninfected cells. We demonstrate that the inability of these cells to fuse with each other is due to a lack of cell surface neuraminic acid. Neuraminic acid is the receptor for the HPF3 hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. Uninfected CV-1 cells were treated with neuraminidase and then tested for their ability to fuse with the persistently infected (pi) cells. Neuraminidase treatment totally abolished cell fusion. To extend this result, we used a cell line deficient in sialic acid and demonstrated that these cells, like the neuraminidase-treated CV-1 cells, were unable to fuse with pi cells. We then tested whether mimicking the agglutinating function of the HN molecule with lectins would result in cell fusion. We added a panel of five lectins to the neuraminic acid-deficient cells and showed that binding of these cells to the pi cells did not result in fusion; the lectins could not substitute for interaction of neuraminic acid with the HN molecule in promoting membrane fusion. These results provide compelling evidence that the HN molecule of HPF3 and its interaction with neuraminic acid participate in membrane fusion and that cell fusion is mediated by an interaction more complex than mere juxtaposition of the cell membranes.  相似文献   

17.
Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 Å, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.  相似文献   

18.
We recently reported the first crystal structure of a paramyxovirus hemagglutinin-neuraminidase (HN) from Newcastle disease virus. This multifunctional protein is responsible for binding to cellular sialyl-glycoconjugate receptors, promotion of fusion through interaction with the second viral surface fusion (F) glycoprotein, and processing progeny virions by removal of sialic acid from newly synthesized viral coat proteins. Our structural studies suggest that HN possesses a single sialic acid recognition site that can be switched between being a binding site and a catalytic site. Here we examine the effect of mutation of several conserved amino acids around the binding site on the hemagglutination, neuraminidase, and fusion functions of HN. Most mutations around the binding site result in loss of neuraminidase activity, whereas the effect on receptor binding is more variable. Residues E401, R416, and Y526 appear to be key for receptor binding. The increase in fusion promotion seen in some mutants that lack receptor binding activity presents a conundrum. We propose that in these cases HN may be switched into a fusion-promoting state through a series of conformational changes that propagate from the sialic acid binding site through to the HN dimer interface. These results further support the single-site model and suggest certain residues to be important for the triggering of fusion.  相似文献   

19.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.  相似文献   

20.
The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein responsible for attachment to receptors containing sialic acid, neuraminidase (NA) activity, and the promotion of membrane fusion, which is induced by the fusion protein. Analysis of the three-dimensional structure of Newcastle disease virus (NDV) HN protein revealed the presence of a large pocket, which mediates both receptor binding and NA activities. Recently, a second sialic acid binding site on HN was revealed by cocrystallization of the HN with a thiosialoside Neu5Ac-2-S-alpha(2,6)Gal1OMe, suggesting that NDV HN contains an additional sialic acid binding site. To evaluate the role of the second binding site on the life cycle of NDV, we rescued mutant viruses whose HNs were mutated at Arg516, a key residue that is involved in the second binding site. Loss of the second binding site on mutant HNs was confirmed by the hemagglutination inhibition test, which uses an inhibitor designed to block the NA active site. Characterization of the biological activities of HN showed that the mutation at Arg516 had no effect on NA activity. However, the fusion promotion activity of HN was substantially reduced by the mutation. Furthermore, the mutations at Arg516 slowed the growth rate of virus in tissue culture cells. These results suggest that the second binding site facilitates virus infection and growth by enhancing the fusion promotion activity of the HN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号