首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal‐mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host‐targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal‐mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal‐mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM.  相似文献   

2.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能.  相似文献   

3.
Pathogenic Gram-positive bacteria encounter many obstacles in route to successful invasion and subversion of a mammalian host. As such, bacterial species have evolved clever ways to prevent the host from clearing an infection, including the production of specialized virulence systems aimed at counteracting host defenses or providing protection from host immune mechanisms. Positioned at the interface of bacteria/host interactions is the bacterial cell wall, a dynamic surface organelle that serves a multitude of functions, ranging from physiologic processes such as structural scaffold and barrier to osmotic lysis to pathogenic properties, for example the deposition of surface molecules and the secretion of cytotoxins. In order to succeed in a battle with host defenses, invading bacteria need to acquire the nutrient iron, which is sequestered within host tissues. A cell-wall based iron acquisition and import pathway was uncovered in Staphylococcus aureus. This pathway, termed the isd or iron-responsive surface determinant locus, consists of a membrane transporter, cell wall anchored heme-binding proteins, heme/haptoglobin receptors, two heme oxygenases, and sortase B, a transpeptidase that anchors substrate proteins to the cell wall. Identification of the isd pathway provides an additional function to the already bountiful roles the cell wall plays in bacterial pathogenesis and provides new avenues for therapeutics to combat the rise of antimicrobial resistance in S. aureus. This review focuses on the molecular attributes of this locus, with emphasis placed on the mechanism of iron transport and the role of such a system during infection.  相似文献   

4.
5.
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram‐negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C‐terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.  相似文献   

6.
Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.  相似文献   

7.
芽胞杆菌属具有良好的蛋白表达和分泌能力,在工业酶的生产中被广泛应用,是理想的工业宿主菌,但实现蛋白分泌表达的普遍高效性还存在许多瓶颈。本文综述了芽胞杆菌的蛋白分泌表达策略,从启动子、信号肽、分泌途径、宿主和培养条件这5个方面总结了提高芽胞杆菌中分泌表达重组蛋白的方法,对芽胞杆菌高效生产工业酶有一定的参考价值,最后展望了优化芽胞杆菌分泌表达的研究方向,各种新型生物技术的发展必将推进芽胞杆菌在分泌表达领域有更深入的应用。  相似文献   

8.
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n‐octyl‐oligo‐oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N‐dimethyldodecylamine N‐oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size‐dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.  相似文献   

9.
Yu ZL  Liu J  Wang FQ  Dai M  Zhao BH  He JG  Zhang H 《Folia microbiologica》2011,56(3):246-252
A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.  相似文献   

10.
Pseudomonas aeruginosa uses a type III secretion system to inject protein effectors into a targeted host cell. Effector secretion is triggered by host cell contact. How effector secretion is prevented prior to cell contact is not well understood. In all secretion systems studied to date, the needle tip protein is required for controlling effector secretion, but the mechanism by which needle tip proteins control effector secretion is unclear. Here we present data that the P. aeruginosa needle tip protein, PcrV, controls effector secretion by assembling into a functional needle tip complex. PcrV likely does not simply obstruct the secretion channel because the pore‐forming translocator proteins can still be secreted while effector secretion is repressed. This finding suggests that PcrV controls effector secretion by affecting the conformation of the apparatus, shifting it from the default, effector secretion ‘on’ conformation, to the effector secretion ‘off’ conformation. We also present evidence that PcrG, which can bind to PcrV and is also involved in controlling effector export, is cytoplasmic and that the interaction between PcrG and PcrV is not required for effector secretion control by either protein. Taken together, these data allow us to propose a working model for control of effector secretion by PcrG and PcrV.  相似文献   

11.
Vibrio mimicus is a typical strain of Vibrio cholerae and produces a phospholipase (PhlA) which shares a highly conserved amino acid sequence with the lecithinase (Lec) of V. cholerae. The recombinant protein (rPhlA) produced from the phlA gene of V. mimicus was expressed in Escherichia coli as His-tag fused protein. The rPhlA was purified by gel filtration and Ni-metal affinity chromatographies. When the action mode was investigated by TLC and GC-MS, the purified rPhlA protein showed a phospholipase A activity, which cleaved the fatty acids at the sn-1 and sn-2 positions of phosphatidylcholine. However, it did not show lysophospholipase, sphingomyelinase, and phospholipase C activities. The rPhlA showed maximum activity at temperature of about 40 degrees C and pH around 8-9. Some divalent cations could affect the activity of PhlA. The addition of Co(2+) increased the activity, whereas Mg(2+) and Zn(2+) did not enhance the enzyme activity. The rPhlA could lyse the erythrocytes obtained from the fish such as rainbow trout and tilapia. A significant cytotoxic activity on a fish cell line, CHSE-214, was observed after 24h exposure to 40 microg rPhlA protein.  相似文献   

12.
Many microbial pathogens co‐opt or perturb host membrane trafficking pathways. This review covers recent examples in which microbes interact with host exocytosis, the fusion of intracellular vesicles with the plasma membrane. The bacterial pathogens Listeria monocytogenes and Staphylococcus aureus subvert recycling endosomal pathways of exocytosis in order to induce their entry into human cells. By contrast, entry of the protozoan pathogen Trypanosoma cruzi or the virus adenovirus into host cells involves exploitation of lysosomal exocytosis. Toxins produced by Bacillus anthracis or Vibrio cholerae interfere with exocytosis pathways mediated by the GTPase Rab11 and the exocyst complex. By doing so, anthrax or cholera toxins impair recycling of cadherins to cell–cell junctions and disrupt the barrier properties of endothelial cells or intestinal epithelial cells, respectively. Uropathogenic Escherichia coli (UPEC) is expelled from bladder epithelial cells through two different exocytic routes that involve sensing of bacteria in vacuoles by host Toll‐like receptor 4 (TLR4) or monitoring of the pH of lysosomes harbouring UPEC. The TLR4 pathway is mediated by multiple Rab GTPases and the exocyst, whereas the other pathway involves exocytosis of lysosomes. Expulsion of UPEC through these pathways is thought to benefit the host.  相似文献   

13.
Secretion of heterologous proteins into the culture supernatant in laboratory strains of Escherichia coli is possible by utilizing a Type I secretion system (T1SS). One prominent example for a T1SS is based on the hemolysin A toxin. With this system, heterologous protein secretion has already been achieved. However, no cultivations in a defined mineral medium and in stirred tank bioreactors have been described in literature up to now, hampering the broad applicability of the system. In this study, a mineral medium was developed for cultivation under defined conditions. With this medium, the full potential and advantage of a secretion system in E. coli (low secretion of host proteins, no contamination with proteins from complex media compounds) can now be exploited. Additionally, quantification of the protein amount in the supernatant was demonstrated by application of the Bradford assay. In this work, host cell behavior was described in small scale by online monitoring of the oxygen transfer rate. Scalability was demonstrated by stirred tank fermentation yielding 540 mg/L HlyA1 in the supernatant. This work enhances the applicability of a protein secretion system in E. coli and paves the way for an industrial application.  相似文献   

14.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.  相似文献   

15.
Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.  相似文献   

16.
We have undertaken a study to characterize the lipolytic pathway responsible for the generation of free fatty acids (FFA) during Fas/CD95-induced apoptosis in Jurkat cells. It was initially shown that the cellular lipid fraction that suffered the major quantitative decrease during Fas-induced apoptosis was that of phosphatidylcholine (PC). In addition, the secretion of palmitic acid-derived FFA was largely prevented by D609, an inhibitor of PC-specific phospholipase C (PC-PLC) and also by the diacylglycerol lipase (DAGL) inhibitor RHC-80267, suggesting that the secretion of these FFA during Fas-induced apoptosis is mediated by the generation of DAG by a PC-PLC activity and, sequentially, by a 1-DAGL activity which generates the FFA from its sn-1 position. The endocannabinoid 2-arachidonoyl glycerol (2-AG) should be generated as a sub-product of this pathway, but it did not accumulate inside the cells nor was secreted into the supernatant. Interestingly, the complete inhibition of free AA secretion during Fas-induced apoptosis was only achieved by using the AA trifluoromethylketone, which not only inhibits all types of phospholipase-A2 (PLA2) activities, but also the described lytic activities on 2-AG. Using a combination of RHC-80267 and the iPLA2-specific inhibitor bromoenol lactone, it was shown that the DAGL pathway also cooperates with iPLA2 in the generation of free arachidonate.  相似文献   

17.
Tissue damage predisposes humans to life‐threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibres. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus‐associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fibre retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces.  相似文献   

18.
The major virulence determinant of Legionella pneumophila is the type IVB secretion system (T4BSS), which delivers approximately 330 effector proteins into the host cell to modulate various cellular processes. However, the functions of most effector proteins remain unclear. WipA, an effector, was the first phosphotyrosine phosphatase of Legionella with unknown function. In this study, we found that WipA induced relatively strong growth defects in yeast in a phosphatase activity‐dependent manner. Phosphoproteomics data showed that WipA was likely involved into endocytosis, FcγR‐mediated phagocytosis, tight junction, and regulation of actin cytoskeleton pathways. Western blotting further confirmed WipA dephosphorylates several proteins associated with actin polymerisation, such as p‐N‐WASP, p‐ARP3, p‐ACK1, and p‐NCK1. Thus, we hypothesised that WipA targets N‐WASP/ARP2/3 complex signalling pathway, leading to disturbance of actin polymerisation. Indeed, we demonstrated that WipA inhibits host F‐actin polymerisation by reducing the G‐actin to F‐actin transition during L. penumophila infection. Furthermore, the intracellular proliferation of wipA/legK2 double mutant was significantly impaired at the late stage of infection, although the absence of WipA does not confer any further effect on actin polymerisation to the legK2 mutant. Collectively, this study provides unique insights into the WipA‐mediated regulation of host actin polymerisation and assists us to elucidate the pathogenic mechanisms of L. pnuemophila infection.  相似文献   

19.
Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant‐negative yscF alleles that prevented effector secretion in the presence of wild‐type (WT) YscF. One allele, yscF‐L54V, prevents WT YscF secretion and needle assembly, although purified YscF‐L54V polymerizes in vitro. YscF‐L54V binds to its chaperones YscE and YscG, and the YscF‐L54V–EG complex targets to the T3SS ATPase, YscN. We propose that YscF‐L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF‐L54V does not affect the activity of pre‐assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate‐specific binding site as a mechanism to exclude early substrates from Yop‐secreting machines.  相似文献   

20.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号