首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
In a previous study we demonstrated regenerative growth of extraocular muscle within transplanted peripheral nerve autografts. The present study addresses the feasibility of inducing regeneration of limb muscle within autologous peripheral nerve implants in the gluteus medius of beagles. In six anesthetized animals, a 2-cm segment of the left infraorbital sensory nerve was removed from the nose and implanted between the cut ends of several muscle fascicles in the left gluteus medius. After 4 weeks, the nerve grafts were removed and examined by light and electron microscopy. Muscle fibers were seen surrounded by the epineurium of the implanted nerve along its entire length, growing in parallel with the long axis of the nerve. The regenerating fibers were closely associated with the basal lamina of degenerating myelinated and unmyelinated axons. This study suggests that limb muscle, like extraocular muscle, is capable of organized regenerative growth within peripheral nerve autografts.  相似文献   

2.
Forelimbs and hindlimbs are, clearly, quite different, and it has long been appreciated that their differences are assigned early in development; the genetic basis of these differences has been more mysterious, however. Recent work has now shown that the homeobox gene Pitx1 imparts identity to the developing hindlimb bud.  相似文献   

3.
4.
Limb skeletal muscle adaptation in athletes after training at altitude   总被引:8,自引:0,他引:8  
Morphological and biochemical characteristics of biopsies obtained from gastrocnemius (GAS) and triceps brachii muscle (TRI), as well as maximal O2 uptake (VO2 max) and O2 deficit, were determined in 10 well-trained cross-country skiers before and after a 2-wk stay (2,100 m above sea level) and training (2,700 m above sea level) at altitude. On return to sea level, VO2 max was the same as the prealtitude value, whereas an increase in O2 deficit (29%) and in short-term running performance (17%) was observed (P less than 0.05). GAS showed maintained capillary supply but a 10% decrease in mitochondrial enzyme activities (P less than 0.05), whereas an increase in capillary supply (P less than 0.05) but unchanged mitochondrial enzyme activities were observed in TRI. Buffer capacity was increased by 6% in both GAS and TRI (P less than 0.05). A positive correlation was found between the relative increase in buffer capacity of GAS and short-term running time (P less than 0.05). Thus the present study indicates no effect of 2 wk of altitude training on VO2 max but provides evidence to suggest an improvement in short-term exercise performance, which may be the result of an increase in muscle buffer capacity.  相似文献   

5.
An extensive series reviewing the benefits and drawbacks of use of the gracilis muscle in lower-extremity trauma has not previously been collected. In this series of 50 patients, the use of microvascular free transfer of the gracilis muscle for lower-extremity salvage in acute traumatic wounds and posttraumatic chronic wounds is reviewed. In addition, the wound size, injury patterns, problems, and results unique to the use of the gracilis as a donor muscle for lower-extremity reconstruction are identified. In a 7-year period from 1991 to 1998, 50 patients underwent lower-extremity reconstruction using microvascular free gracilis transfer at the University of Maryland Shock Trauma Center, Johns Hopkins Hospital, and Johns Hopkins Bayview Medical Center. There were 22 patients who underwent reconstruction for coverage of acute lower-extremity traumatic soft-tissue defects associated with open fractures. The majority of patients were victims of high-energy injuries with 91 percent involving motor vehicle or motorcycle accidents, gunshot wounds, or pedestrians struck by vehicles. Ninety-one percent of the injuries were Gustilo type IIIb tibial fractures and 9 percent were Gustilo type IIIc. The mean soft-tissue defect size was 92.2 cm2. Successful limb salvage was achieved in 95 percent of patients. Twenty-eight patients with previous Gustilo type IIIb tibia-fibula fractures presented with posttraumatic chronic wounds characterized by osteomyelitis or deep soft-tissue infection. Successful free-tissue transfer was accomplished in 26 of 28 patients (93 percent). All but one of the patients in this group who underwent successful limb salvage (26 of 27, or 96 percent) are now free of infection. Use of the gracilis muscle as a free-tissue transfer has been shown to be a reliable and predictable tool in lower-extremity reconstruction, with a flap success and limb salvage rate comparable to those in other large studies.  相似文献   

6.
In 1935, Snodgrass proposed that the evolutionary ground state of arthropod limbs consisted of two segments. Recent genetic studies on the Antennapedia and Homothorax genes of Drosophila raise questions about the nature of this ground state appendage.  相似文献   

7.
《Cell》2022,185(1):95-112.e18
  1. Download : Download high-res image (206KB)
  2. Download : Download full-size image
  相似文献   

8.
In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.  相似文献   

9.
We have compared the movements generated by stimulation of muscle, nerve, spinal roots and spinal cord in anesthetized, decerebrate and spinalized cats. Each method produced a full range of movements of the cat's hind limb in the sagittal plane against a spring load, except for stimulation of the roots. Stimulation of the dorsal roots produced movements that were mainly up and forward, whereas stimulation of the ventral roots produced complementary movements (down and backward). Results from stimulation in the intermediate areas of the spinal cord were compared to predictions of the "movement primitives" hypothesis. We could not confirm that the directions were independent of stimulus amplitude or the state of descending inputs. Pros and cons of stimulating at some sites were provisionally considered for the reliable control of limb movements with functional electrical stimulation (FES) in clinical conditions.  相似文献   

10.
Limb development is an excellent model for studying how patterns of differentiated cells and tissues are generated in vertebrate embryos. The cell interactions that mediate patterning have been discovered and, more recently, some of the molecules involved in these interactions have been identified. This has provided a direct link to genetics and thus to genes that cause human congenital limb defects.  相似文献   

11.
12.
13.
The majority of skeletal muscles in higher vertebrates are hypaxial and stem from the lateral lip of the dermomyotomes. Various external signals converge on the dorsolateral quadrant of the somite to specify the hypaxial muscle precursors, to discriminate between migratory and non-migratory cells and to allow delamination of precursors destined for long-range migration. Within the somite, Pax3 acts as upstream regulator of hypaxial muscle development. Downstream targets are cMet and Lbx1, which may independently control identity, differentiation and motility of migratory muscle precursors. Received: 31 August 1998 / Accepted: 20 October 1998  相似文献   

14.
Sieck, Gary C., Louise E. Wilson, Bruce D. Johnson, andWen-Zhi Zhan. Hypothyroidism alters diaphragm muscle development. J. Appl. Physiol. 81(5):1965-1972, 1996.The impact of hypothyroidism (Hyp) onmyosin heavy chain (MHC) isoform expression, maximum specific force(Po), fatigability, and maximumunloaded shortening velocity(Vo) wasdetermined in the rat diaphragm muscle (Dia) at 0, 7, 14, 21, and 28 days of age. Hyp was induced by treating pregnant rats with6-n-propyl-2-thiouracil (0.05% indrinking water) beginning at gestational day10 and was confirmed by reduced plasma levels of3,5,3-triiodothyronine and thyroxine. MHC isoforms wereseparated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and analyzed by densitometry. IsometricPo and fatigue resistance of theDia were measured in vitro at 26°C, andVo was determined at 15°C with the slack test. Compared with control muscles,expression of MHC-slow was higher and expression of adult fast MHCisoforms was lower in Hyp Dia at all ages. The neonatal isoform of MHC continued to be expressed in the Hyp Dia until day28. At each age,Po and fatigability were reducedand Vo was slowerin the Hyp Dia. We conclude that Hyp-induced alterations in MHC isoform expression do not fully predict the changes in Dia contractile properties.

  相似文献   

15.
Successful regeneration of damaged striated muscle in adult mice is dependent on the regeneration of newly differentiated myofibers from proliferating satellite cells and inhibition of scar tissue formation by fibroblasts. As with most tissues, the ability of skeletal muscle to regenerate decreases in older animals. In this study, we have analysed soluble extracts from intact and regenerating skeletal muscle from mice of different ages for their ability to affect avian myogenesis in tissue culture. We were interested in determining whether an age-dependent difference could be detected with this tissue culture bioassay system. Total cell proliferation in the cultures, measured by [3H]thymidine incorporation was increased equally by muscle extracts from both young and older mice but the resulting cell populations differed in proportion of cell types. The ratio of myoblasts to fibroblasts was significantly greater in cultures exposed to extracts from younger mouse muscle as compared with cultures exposed to extracts from older animals. This age-related activity was found to reside in a low molecular weight (MW) (greater than 12 kD) component of the extract. This fraction had dissimilar effects on myoblasts and fibroblasts. Relative to saline controls, myoblast proliferation was increased and fibroblast proliferation decreased. The low MW fraction from younger mouse muscle extracts stimulated myogenic cell proliferation and myotube formation to a greater extent than the similar fraction prepared from older mouse muscle. Conversely, younger mouse muscle fractions had significantly greater inhibitory activity against fibroblast proliferation than did older mouse muscle fractions.  相似文献   

16.
Heartening news for head muscle development   总被引:1,自引:0,他引:1  
Branchiomeric craniofacial muscles differ from all other skeletal muscles with respect to embryological origin, motor innervation and upstream activators of myogenesis. A series of recent studies has revealed a striking juxtaposition and overlapping genetic program of craniofacial skeletal muscle progenitor cells with a population of cells giving rise to cardiac muscle. The divergent myogenic fates of adjacent progenitor cells revealed by these data provide a new framework for the study of craniofacial myogenesis.  相似文献   

17.
非编码RNA在骨骼肌发育中的功能   总被引:1,自引:0,他引:1  
张勇  朱大海 《生命科学》2010,(7):668-673
近几年的研究表明,非编码RNA的功能几乎涉及生命活动的各个方面。非编码RNA在骨骼肌发育中的功能研究揭示了骨骼肌发育调控的复杂性。该文总结了骨骼肌发育中非编码RNA的系统发现与鉴定以及非编码RNA在骨骼肌发育和再生中的功能研究。  相似文献   

18.
microRNA在肌肉发育中的功能研究进展   总被引:1,自引:0,他引:1  
microRNA(miRNA)是一类非编码的小RNA分子,它通过对靶mRNA的翻译抑制和降解对基因表达起负调节作用。现在人们已经清楚地知道miRNA参与了增殖、分化、凋亡、发育等许多生物过程。一些miRNA在肌肉中特异表达,参与肌肉发育。该文重点介绍了参与肌肉发育的miRNA。已有证据表明肌肉miRNA在肌肉的增殖和分化过程中起了重要的调节作用,miRNA的调节异常和肌肉疾病有关。因此,miRNA是一类新的肌肉调控因子,它有可能成为畜禽肉产量提高和肌肉相关疾病治疗的新型靶标。  相似文献   

19.
During development, skeletal muscles are established in a highly organized manner, which persists throughout life. Molecular and genetic experiments over the last decades have identified many developmental control genes critical for skeletal muscle formation. Developmental studies have shown that skeletal muscles of the body, limb and head have distinct embryonic and cellular origin, and the genetic regulation at work in these domains and during adult myogenesis are starting to be identified. In this review we will summarize the current knowledge on the regulatory circuits that lead to the establishment of skeletal muscle in these different anatomical regions.  相似文献   

20.
BACKGROUND: Most vertebrate tissues arise by embryonic induction, as a result of which new cell layers are formed. These are subsequently subdivided into discrete groups of homogeneous cell populations, each containing different cell-types with specific gene expression. There is preliminary evidence from previous work that the mesoderm-forming induction in amphibian development may be followed by a further interaction among some of the induced mesoderm cells, and that this could be required for muscle gene activation in uniform cell populations. RESULTS: We have established the existence, time and place of this further cell interaction by transplanting muscle progenitor cells from Xenopus mid-gastrulae into ectoderm sandwiches, and then culturing these constructs until the time of muscle gene activation. We find that cells implanted as reaggregates, but not those implanted as single cells, activate early myogenic genes and later muscle-specific genes. More than 100 cells must be near each other for muscle gene activation. These cells can induce non-muscle mesoderm cells to express muscle genes by emitting a signal that differs from the preceding mesoderm induction signal. Muscle gene activation under these conditions does not require gap junction communication. CONCLUSION: Cells within the muscle progenitor region of a Xenopus embryo need to interact with each other in order to activate muscle genes in homogeneous cell groups. This exemplifies the 'community effect', which may be a widespread developmental mechanism used to increase the homogeneity within, and demarkation between, embryonic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号