首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the initial steps of neurogenesis in the Drosophila embryo is the delamination of a stereotype set of neural progenitor cells (neuroblasts) from the neuroectoderm. The time window of neuroblast segregation has been divided into five successive waves (S1-S5) in which subsets of neuroblasts with specific identities are formed. To test when identity specification of the various neuroblasts takes place and whether extrinsic signals are involved, we have performed heterochronic transplantation experiments. Single neuroectodermal cells from stage 10 donor embryos (after S2) were transplanted into the neuroectoderm of host embryos at stage 7 (before S1) and vice versa. The fate of these cells was uncovered by their lineages at stage 16/17. Transplanted cells adjusted their fate to the new temporal situation. Late neuroectodermal cells were able to take over the fate of early (S1/S2) neuroblasts. The early neuroectodermal cells preferentially generated late (S4/S5) neuroblasts, despite their reduced time of exposure to the neuroectoderm. Furthermore, neuroblast fates are independent from divisions of neuroectodermal progenitor cells. We conclude from these experiments that neuroblast specification occurs sequentially under the control of non-cell-autonomous and stage-specific inductive signals that act in the neuroectoderm.  相似文献   

2.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

3.
Larvae of the spider crab Hyas araneus were reared in the laboratory from hatching through to metamorphosis. Neurogenesis was recorded in the ventral nerve cord during development of successive larval stages, zoea 1, zoea 2, megalopa and crab 1. Proliferating cells were detected immunocytochemically after in vivo labelling with 5-bromo-2-deoxyuridine (BrdU) which, as a thymidine analogue, is incorporated into the DNA of dividing cells. Segmental sets of mitotically highly active neuroblasts were found in newly hatched larvae. A dorsal neuroblast, a ventral-median neuroblast, 3–6 anterior-ventral neuroblasts and 1–3 lateral neuroblasts could be distinguished in each thoracic ganglion. Significantly fewer neuroblasts were labelled in the suboesophageal ganglion as compared to the thoracic ganglia. The number of active labelled neuroblasts was high throughout zoea 1 and about 30% of zoea 2 development and then dramatically decreased towards premetamorphosis. In the newly moulted megalopa, only a reduced set of neuroblasts was labelled which ceased dividing within the first few days of megalopa development. There is an indication that, although most ganglion mother cells born by unequal division of neuroblasts may go through their final division at an early stage, certain clusters of ganglion mother cells obviously delay their final mitosis. These results are discussed with regard to neuronal integration which necessarily changes during the course of metamorphosis in relation to the altered behavioural repertoire of the larvae.  相似文献   

4.
The ectopic distribution of synaptic ribbons in dendrites of mouse retinal bipolar cells was examined by using genetic ablation of metabotropic glutamate receptor subtype 6 (mGluR6), electron microscopy, and immunocytochemistry. Ectopic ribbons were observed in dendrites of rod and ON-cone bipolar cells in the mGluR6-deficient mouse but not in those of wild-type mice. The number of rod spherules facing the ectopic ribbons in mGluR6-deficient rod bipolar dendrites increased gradually during early growth and reached a plateau level of about 20% at 12 weeks. These ectopic ribbons were immunopositive for RIBEYE, a ribbon-specific protein, but the associated vesicles were immunonegative for synaptophysin, a synaptic-vesicle-specific protein. The presence of ectopic ribbons was correlated with an increase in the roundness of the invaginating dendrites of the rod bipolar cells. We further confirmed ectopic ribbons in dendrites of OFF-cone bipolar cells in wild-type retinas. Of the four types of OFF-cone bipolar cells (T1–T4), only the T2-type, which had a greater number of synaptic ribbons at the axon terminal and a thicker axon cylinder than the other types, had ectopic ribbons. Light-adapted experiments revealed that, in wild-type mice under enhanced-light adaptation (considered similar to the mGluR6-deficient state), the roundness in the invaginating dendrites and axon terminals of rod bipolar cells increased, but no ectopic ribbons were detected. Based on these findings and known mechanisms for neurotransmitter release and protein trafficking, the possible mechanisms underlying the ectopic ribbons are discussed on the basis of intracellular transport for the replenishment of synaptic proteins.  相似文献   

5.
We have isolated full-length cDNAs of chick Chx10 and Chx10-1, two members of the paired type homeobox/CVC gene family. A comparison of sequences suggests that Chx10 is closely related to Alx/Vsx-2 and Vsx-2 of zebrafish and goldfish, respectively; while Chx10-1 is closely related to Vsx-1 of zebrafish and goldfish. Chx10 and Chx10-1 are expressed in the early retinal neuroepithelium, but not in the pigment epithelium and lens. The expression of Chx10 is present in most retinal neuroblasts, while Chx10-1 exhibits a novel pattern along the nasotemporal border. In the differentiating retina, both Chx10 and Chx10-1 are restricted to bipolar cells and are maintained at a low level in bipolar cells of the mature retina.  相似文献   

6.
The proliferative activity of undifferentiated brain cells from either 5- or 7-day-old chick embryos has been investigated by labeling the cells with a 24-hr pulse label of [14C]- or [3H]-thymidine during the early stages (0 to 8 days) of culture. As soon as the neurons and the glial cells could be distinguished (after 4, 7, or 14 days of culture), the cultures were prepared and submitted to the activated autoradiographic method. In some experiments a continuous labeling was applied up to 2 weeks. During the first 48 hr of culture, and for both embryonic ages studied, nearly all neuronal precursors were able to proliferate. After 4 days in culture for the 7-day-old embryo and 7 days in culture for the 5-day-old embryo most of the neuronal cells stopped dividing. These two culture periods correspond to the stage of the embryonic life when the end of the mitotic activity of neuroblasts occurs in vivo. Thus, the proliferation and development in culture of most neuroblasts was found to parallel the in vivo evolution of these cells. Some neuroblasts, however, continued to multiply in vitro for a longer period of time. The astroblasts precursors were found to multiply actively from the 3rd day on, or immediately from time zero, for the 5- and 7-day-old chick embryos, respectively. These observations seem to indicate that the astroblast precursors are in a latent stage until they have reached Day 7. Thereafter, they proliferate actively during the first week of culture and therefore remain in an embryonic stage during this culture period. This fact corresponds also to the in vivo situation, where the glial cell precursors multiply actively around the same time period.  相似文献   

7.
New neurones are produced in the adult hippocampus throughout life and are necessary for certain types of hippocampal learning. Little, however, is known about the control of hippocampal neurogenesis. We used primary hippocampal cultures from early post-natal rats and neuropeptide Y Y1 receptor knockout mice as well as selective neuropeptide Y receptor antagonists and agonists to demonstrate that neuropeptide Y is proliferative for nestin-positive, sphere-forming hippocampal precursor cells and beta-tubulin-positive neuroblasts and that the neuroproliferative effect of neuropeptide Y is mediated via its Y1 receptor. Immunohistochemistry confirmed Y1 receptor staining on both nestin-positive cells and beta-tubulin-positive cells in culture and short pulse 5-bromo-2-deoxyuridine studies demonstrated that neuropeptide Y has a proliferative effect on both cell types. These studies suggest that the proliferation of hippocampal neuroblasts and precursor cells is increased by neuropeptide Y and, therefore, that hippocampal learning and memory may be modulated by neuropeptide Y-releasing interneurones.  相似文献   

8.
The first step in generating cellular diversity in the Drosophila central nervous system is the formation of a segmentally reiterated array of neural precursor cells, called neuroblasts. Subsequently, each neuroblast goes through an invariant cell lineage to generate neurons and/or glia. Using molecular lineage markers, I show that (1) each neuroblast forms at a stereotyped time and position; (2) the neuroblast pattern is indistinguishable between thoracic and abdominal segments; (3) the development of individual neuroblasts can be followed throughout early neurogenesis; (4) gene expression in a neuroblast can be reproducibly modulated during its cell lineage; (5) identified ganglion mother cells form at stereotyped times and positions; and (6) the cell lineage of four well-characterized neurons can be traced back to two identified neuroblasts. These results set the stage for investigating neuroblast specification and the mechanisms controlling neuroblast cell lineages.  相似文献   

9.
10.
K Ito  Y Hotta 《Developmental biology》1992,149(1):134-148
The spatio-temporal proliferation pattern of postembryonic neuroblasts in the central brain region of the supra-esophageal ganglion of Drosophila melanogaster was studied by labeling DNA replicating cells with 5-bromo-2'-deoxyuridine (BrdU). There are five proliferating neuroblasts per hemisphere in larvae just after hatching: one in the ventro-lateral, and the other four in the postero-dorsal region of the brain. Dividing neuroblasts increase during the late first-late second instar larval stages, reaching a plateau of about 85 neuroblasts per hemisphere. Most neuroblasts cease dividing 20-30 hr after puparium formation (APF), while only four in the postero-dorsal region continue making progenies until 85-90 hr APF. The four distinct neuroblasts proliferating in the early larval and late pupal stages are identical; they lie in the cortex above the calyces of the mushroom bodies (corpora pedunculata), proliferating over a period twice as long as that for the other neuroblasts. Their daughter neurons project into the mushroom body neuropile, and hence are likely to be the Kenyon cells. The cell-cycle period of the four neuroblasts (named mushroom body neuroblasts: MBNbs) is rather constant (1.1-1.5 hr) during the mid larval-early pupal stages and is longer before and after that. The total number of the MBNb progenies made throughout the embryonic and postembryonic development was estimated to be 800-1200 per hemisphere.  相似文献   

11.
Summary During the development of the chick embryo from the 6th to the 15th day of incubation, the cell types in cerebral hemispheres undergo differentiation. During this period the indifferent cells of the germinal layer migrate away from the neural cavity to form the mantle layer. These cells differentiate into neuroblasts and spongioblasts.RNA biosynthesis is very active in the cells of the germmal layer of the young embryos. From the 10th day on, it decreased becoming very weak in the 15-days old embryos. The RNA is stored in the nucleus and its passage to cytoplasm is very slow.In 6 and 8-days old embryos the RNA biosynthesis in the mantle layer is not very active but increases during embryonic development as the germinal cells differentiate. The biosynthesis is always more intense in the neuroblasts than in the spongioblasts. The RNA is stored in the nucleus and its passage to cytoplasm is slow in the young neuroblasts and the spongioblasts. The formation of Nissl bodies in neuroblasts and the differentiation of neuroblasts into neurons, which corresponds to the development of axons and dendrites, both are accompanied by an activation of the RNA passage from the nucleus into the cytoplasm.With the technical assistance of A. Brossard.  相似文献   

12.
We have isolated full-length cDNAs of chick Chx10 and Chx10-1, two members of the paired type homeobox/CVC gene family. A comparison of sequences suggests that Chx10 is closely related to Alx/Vsx-2 and Vsx-2 of zebrafish and goldfish, respectively; while Chx10-1 is closely related to Vsx-1 of zebrafish and goldfish. Chx10 and Chx10-1 are expressed in the early retinal neuroepithelium, but not in the pigment epithelium and lens. The expression of Chx10 is present in most retinal neuroblasts, while Chx10-1 exhibits a novel pattern along the nasotemporal border. In the differentiating retina, both Chx10 and Chx10-1 are restricted to bipolar cells and are maintained at a low level in bipolar cells of the mature retina.  相似文献   

13.
14.
Summary A method of fractionation of neuroblasts and spongioblasts perikarya from developing chick embryo cerebral hemispheres is described. The tissue, treated by a mixture of acetone-glycerol-water is dissociated through a nylon sieve. Differential centrifugation on sucrose 1.3 M and 1.8 M has been used to obtain fractions enriched in neuroblasts (80% purity) and spongioblasts (90% purity). The duration of the whole operation is two hours.The evolution and distribution of the cells was studied on dissociated tissue from the 6th day of embryonic life to hatching. The proportion of neuroblasts varies from 13% at 6 days to 36% at 12 days. At the same period the proportion of the sum of indifferent cells and spongioblasts decreases from 81 to 58%, whereas the ependymal cells show little variation (6 to 9%). At hatching these proportions have not changed greatly: neuroblasts, spongioblasts and ependymal cells represent respectively 33, 65 and 2% of the total cells.The cellular differentiation proceeds from the 6th day to hatching. The size of neuroblasts increases and many of them become multipolar. The number of spindle-like cells and small indifferent cells whose origin is probably the germinal layer, decreases together with the thickness of this layer. Early spongioblasts appear only at 10 days and, later on, differentiate into oligodendroblasts and astroblasts.This study is a part of the Doctorat ès-Sciences thesis of C. Judes (Attaché de Recherche au C. N. R. S.).Chargée de Recherche au C. N. R. S.Maître de Recherche au C. N. R. S.  相似文献   

15.
In Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6-derived glial cells. In ladybird loss-of-function mutants, the NB 5-6-derived exit glial cells are absent while overexpression of these genes leads to supernumerary glial cells of this type. Furthermore, aberrant glial cell positioning and aberrant spacing of axonal fascicles in the nerve roots observed in embryos with altered ladybird function suggest that the ladybird genes might also control directed cell movements and cell-cell interactions within the developing Drosophila ventral nerve cord.  相似文献   

16.
The effects of four concentrations of colchicine (2.5 x 10-7, x 10-5, x 10-3, and x 10-2 M) on the cell cycle of grasshopper neuroblasts have been determined by direct observations on living cells. The lowest concentration, 2.5 x 10-7 M, does not completely disorganize the spindle but does retard its action. The three higher concentrations disorganize the spindle, so that all cells reaching metaphase are blocked in a c-mitotic condition throughout the period of observations (308 min at 38°C, the minimum duration of the cell cycle in untreated neuroblasts). Continuous treatment with all concentrations reduces the rate at which neuroblasts enter metaphase, the extent of the reduction being a function of increasing concentration and time of exposure. After a short exposure to 2.5 x 10-5 M colchicine, the neuroblasts recover from the inhibiting effects on progression through the cycle to metaphase, but they show no recovery from the inhibiting effects on spindle formation for more than 3 hr. Apparent stimulation of progression rate occurs early in exposure to all concentrations and during recovery from a short exposure to 2.5 x 10-5 M. Morphological alterations in the chromatin of telophase, interphase, and prophase cells are induced by the higher concentrations of colchicine. The data indicate that caution should be exercised in the use of colchicine for determining cell cycle duration and/or the effects of physical and chemical agents on the cycle.  相似文献   

17.
The histoenzymic pattern of oxidative enzymes (G-6-PDH, G-PDH, ICDH, SDH, HBDH, NADH-2:tetrazolium dehydrogenase) was investigated in the developing neuroglia of rabbit brains, with special regard to the period of myelinogenesis. The obtained results lead to following conclusions: (1) During the early period of postnatal development there is maximal oxidative enzyme activity in ependymal cells, somewhat less reactive are the undifferentiated matrix cells and the differentiating cells of the mantle layer. No distinction can be made between the response of spongio- and neuroblasts. (2) Distinctly increased oxidoreductase activity, as compared to the early period of postnatal development, is demonstrated by the differentiating cells of myelination gliosis, no prevalence being demonstrable for enzymes of the particular metabolic pathways (pentose shunt, glycolysis or Krebs cycle). (3) G-6-PDH, G-PDH and oxidoreductases acting within the citric acid cycle are demonstrable only in single cells of the interfascicular oligodendroglia of adult rabbit brains, while almost all cells exhibit appreciable activity of HBDH and NADH-2 tetrazolium dehydrogenase.  相似文献   

18.
Summary The larval and early pupal development of the optic lobes in Drosophila is described qualitatively and quantitatively using [3H]thymidine autoradiography on 2-m plastic sections. The optic lobes develop from 30–40 precursor cells present in each hemisphere of the freshly hatched larva. During the first and second larval instars, these cells develop to neuroblasts arranged in two epithelial optic anlagen. In the third larval instar and in the early pupa these neuroblasts generate the cells of the imaginal optic lobes at discrete proliferation zones, which can be correlated with individual visual neuropils.The different neuropils as well as the repetitive elements of each neuropil are generated in a defined temporal sequence. Cells of the medulla are the first to become postmitotic with the onset of the third larval instar, followed by cells of the lobula complex and finally of the lamina at about the middle of the third instar. The elements of each neuropil connected to the most posterior part of the retina are generated first, elements corresponding to the most anterior retina are generated last.The proliferation pattern of neuroblasts into ganglion mother cells and ganglion cells is likely to include equal as well as unequal divisions of neuroblasts, followed by one or two generations of ganglion mother cells. For the lamina the proliferation pattern and its temporal coordination with the differentiation of the retina are shown.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号