首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific binding site for thromboxane A2 (TXA2) was studied in cultured vascular smooth muscle cells (VSMC) of the rat aorta. [3H]SQ29,548, a potent and selective TXA2 receptor antagonist, displayed high-affinity and specificity, as well as saturable and displaceable binding to rat VSMC in culture. Scatchard analysis of equilibrium binding at 24 degrees C revealed a single class of binding sites with a Kd of 1.7 nM and a Bmax of 8.0 fmol/10(6) cells. A series of TXA2 receptor antagonists completely suppressed [3H]SQ29,548 binding to rat VSMC, and the rank order of their inhibitory potencies (Ki) correlated well with the potencies for suppression of the U46619-induced contraction of rat thoracic aorta. These results suggest that specific binding sites for [3H]SQ29,548 represent the TXA2 receptor in rat VSMC.  相似文献   

2.
In recent years, evidence has accumulated that many endogenous peptides play an important regulatory role in angiogenesis by modulating endothelial cell behavior. Adrenomedullin (AM), one such factor, was previously shown to exert a clearcut proangiogenic effect in vitro when tested on specialized human endothelial cells, such as HUVECs and immortalized endothelial cell lines. In the present study we used normal adult vascular endothelial cells isolated from human saphenous vein to analyze in vitro the role of AM, related to both early (increased cell proliferation) and late (differentiation and self-organization into capillary-like structures) angiogenic events and their relationship with the vascular endothelial growth factor (VEGF) signaling cascade. The results indicated that also in this endothelial cell phenotype AM promoted cell proliferation and differentiation into cord-like structures. These actions resulted specific and were mediated by the binding of AM to its AM1 (CRLR/RAMP2) receptor. Neither the administration of a VEGF receptor 2 (VEGFR-2) antagonist nor the downregulation of VEGF production by gene silencing were able to suppress the proangiogenic effect of AM. However, when the experiments were performed in the presence of SU5416 (a selective inhibitor of the VEGFR-2 receptor at the level of the intra-cellular tyrosine kinase domain) the proangiogenic effect of AM was abolished. This result suggests that in vascular endothelial cells the binding of AM to its AM1 receptor could trigger a transactivation of the VEGFR-2 receptor, leading to a signaling cascade inducing proangiogenic events in the cells.  相似文献   

3.
Using 125I-labeled-Tyr0-rat(r)-calcitonin gene-related peptide (CGRP), a potent vasodilatory neuropeptide, we have identified and characterized specific binding sites for CGRP in cultured rat vascular smooth muscle cells (VSMC) and bovine endothelial cells (EC). rCGRP and human (h) CGRP equipotently inhibited 125I-rCGRP binding to both cells, but human calcitonin (hCT) was less potent and other unrelated polypeptides were ineffective. Both rCGRP and hCGRP, but not hCT, equally stimulated intracellular cAMP generation in both cells distinct from beta-adrenergic receptor-mediated mechanism, although they had no effect on cGMP generation in either cell or synthesis of prostacyclin in EC. Autoradiograph of affinity-labeled cell membranes revealed that 125I-rCGRP interacts with a single binding component of almost identical molecular size (approximately 60-kDa) in both cells under reducing and nonreducing conditions. The present study demonstrates for the first time the presence of CGRP receptors in cultured VSMC and EC, functionally coupled to adenylate cyclase system distinct from beta-adrenergic receptors. It is suggested that CGRP-induced vasorelaxation may be mediated partly by cAMP-dependent and/or endothelium-dependent mechanism.  相似文献   

4.
5.
We have studied the interaction of 125I-antithrombin (125I-AT) with microvascular endothelial cells (RFPEC) to localize the cellular site of anticoagulantly active heparan sulfate proteoglycans (HSPG). The radiolabeled protease inhibitor bound specifically to the above HSPG with a Kd of approximately 50 nM. Confluent monolayer RFPEC cultures exhibited a linear increase in the amount of AT bound per cell for up to 16 d, whereas suspension RFPEC cultures possessed a constant number of protease inhibitor binding sites per cell for up to 5 d. These results suggest that monolayer RFPEC cultures secrete anticoagulantly active HSPG, which then accumulate in the extracellular matrix. This hypothesis was confirmed by quantitative light and EM level autoradiography which demonstrated that the AT binding sites are predominantly located in the extracellular matrix with only small quantities of protease inhibitor complexed to the cell surface. We have also pinpointed the in vivo position of anticoagulantly active HSPG within the blood vessel wall. Rat aortas were perfused, in situ, with 125I-AT, and bound labeled protease inhibitor was localized by light and EM autoradiography. The anticoagulantly active HSPG were concentrated immediately beneath the aortic and vasa vasorum endothelium with only a very small extent of labeling noted on the luminal surface of the endothelial cells. Based upon the above data, we propose a model whereby luminal and abluminal anticoagulantly active HSPG regulate coagulation mechanism activity.  相似文献   

6.
The fibroblast growth factor (FGF) receptor of human umbilical vein-derived endothelial (HUE) cells has been identified by affinity labeling. It has an apparent molecular weight of 130,000. It binds both basic and acidic FGF, but not with epidermal growth factor, insulin, or transferrin. The lectin concanavalin-A does not inhibit the binding of 125l-bFGF to HUE cell-surface receptors, whereas it inhibits bFGF binding to BHK-21 cell-surface FGF receptor. This suggests that both types of receptors may differ in their degree of glycosylation. In contrast to other cell types, heparin only slightly inhibits the binding of basic FGF to its receptor. Protamine sulfate, which is anti-angiogenic in vivo, and suramin, a drug used in the therapy of trypanosomiasis and onchocerciasis, also inhibit the binding of basic FGF to the receptor.  相似文献   

7.
Prostaglandin A2 (PGA2) stimulates the biosynthesis of gamma-glutamylcysteine synthetase and elevates glutathione (GSH) contents in cultured mammalian cells. To clarify the importance of gamma-glutamylcysteine synthetase induction in the defence of endothelial cells against oxidative stress, the effect of PGA2 on menadione (2-methyl-1,4-naphthoquinone)-induced cell injury was examined. Incubation of porcine aorta endothelial cells with menadione produced marked loss of cellular GSH and protein sulfhydryl groups, followed by leakage of lactic dehydrogenase (LDH) into the culture medium. The LDH leakage and modification of protein thiol was, however, completely prevented by pretreatment of the cells with PGA2. The protective effect of PGA2 was more potent than that of cysteine delivery agents such as methionine, N-acetylcysteine or 2-oxo-4-thiazolidine carboxylic acid (OTC). The results suggest that cellular GSH plays an important role in the defence against oxidative stress, and induction of gamma-glutamylcysteine synthetase is effective for protecting vascular endothelial cells.  相似文献   

8.
An increased synthesis of thromboxane (TX) A(2) is associated with a number of cardiovascular diseases including atherosclerosis, unstable angina and hypertension. We previously identified a subgroup of NZW rabbits in which isolated arteries failed to contract to the TX agonists, U46619 or I-BOP. In vascular smooth muscle membranes, there was a significant decrease in TX receptors, termed TP. These rabbits are referred to as vTP- and those with the TP receptor are called vTP+. Because TP receptors are expressed in some types of endothelial cells, the present study was designed to determine whether functional TP receptors are present in endothelial cells cultured from aortas of vTP+ and vTP- rabbits. Radioligand binding studies were performed with (125)I-BOP. Aortic endothelial cells from vTP+ rabbits exhibited specific and saturable binding. In contrast, in endothelial preparations from vTP- rabbit aortas, no measurable binding to (125)I-BOP was detected. Using an anti-TP receptor antibody, we compared the amount of receptor expressed in endothelial cell lysates obtained from vTP+ and vTP- rabbits. Consistent with the results observed radioligand binding assays, the expression of TP receptor protein was decreased in vTP- compared to vTP+ endothelial cells. An in vitro wound healing assay was used on confluent monolayers of endothelial cells. In the untreated vTP+ cells, the area of the scratch was completely closed by 30 h. In the vTP+ cells treated with U46619 (3 microM), the rate of closure of the scratch area was reduced with approximately 12% of the scratch area remaining at 30 h. Pretreatment with the TP receptor antagonist, SQ 29548 (10 microM) prevented the inhibitory effect of U46619. The rate of closure of the scratch in the vTP- was not altered by U46619. In a separate study, U46619 (3 microM) increased the release of 6-keto PGF(1alpha), the stable metabolite of prostacyclin, in vTP+ but not vTP- endothelial cells. Pretreatment with SQ29548 (10 microM) or the cyclooxygenase inhibitor, indomethacin (10 microM) blocked the increase in vTP+ endothelial cells. In vascular reactivity studies in aortas from vTP+ rabbits, removal of the endothelium enhanced the vasoconstrictor response to U46619 indicating that activation of endothelial TP receptors may modulate vascular tone via the release of the vasodilator, prostacyclin. The results of this study suggest an important role for endothelial TP receptors in modulating vascular function.  相似文献   

9.
An increased synthesis of thromboxane (TX) A2 is associated with a number of cardiovascular diseases including atherosclerosis, unstable angina and hypertension. We previously identified a subgroup of NZW rabbits in which isolated arteries failed to contract to the TX agonists, U46619 or I-BOP. In vascular smooth muscle membranes, there was a significant decrease in TX receptors, termed TP. These rabbits are referred to as vTP− and those with the TP receptor are called vTP+. Because TP receptors are expressed in some types of endothelial cells, the present study was designed to determine whether functional TP receptors are present in endothelial cells cultured from aortas of vTP+ and vTP− rabbits. Radioligand binding studies were performed with 125I-BOP. Aortic endothelial cells from vTP+ rabbits exhibited specific and saturable binding. In contrast, in endothelial preparations from vTP− rabbit aortas, no measurable binding to 125I-BOP was detected. Using an anti-TP receptor antibody, we compared the amount of receptor expressed in endothelial cell lysates obtained from vTP+ and vTP− rabbits. Consistent with the results observed radioligand binding assays, the expression of TP receptor protein was decreased in vTP− compared to vTP+ endothelial cells. An in vitro wound healing assay was used on confluent monolayers of endothelial cells. In the untreated vTP+ cells, the area of the scratch was completely closed by 30 h. In the vTP+ cells treated with U46619 (3 μM), the rate of closure of the scratch area was reduced with approximately 12% of the scratch area remaining at 30 h. Pretreatment with the TP receptor antagonist, SQ 29548 (10 μM) prevented the inhibitory effect of U46619. The rate of closure of the scratch in the vTP− was not altered by U46619. In a separate study, U46619 (3 μM) increased the release of 6-keto PGF, the stable metabolite of prostacyclin, in vTP+ but not vTP− endothelial cells. Pretreatment with SQ29548 (10 μM) or the cyclooxygenase inhibitor, indomethacin (10 μM) blocked the increase in vTP+ endothelial cells. In vascular reactivity studies in aortas from vTP+ rabbits, removal of the endothelium enhanced the vasoconstrictor response to U46619 indicating that activation of endothelial TP receptors may modulate vascular tone via the release of the vasodilator, prostacyclin. The results of this study suggest an important role for endothelial TP receptors in modulating vascular function.  相似文献   

10.
Characteristics of specific receptors for epidermal growth factor (EGF) and its effect on cellular proliferation and synthesis of DNA and protein were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Binding studies using 125I-EGF revealed the presence of high affinity binding sites for EGF on VSMC in culture: the apparent dissociation constant was approximately 2.5 X 10(-10)M and the maximal binding capacity was approximately 67,000 sites/cell. EGF stimulated cellular proliferation and incorporation of [3H]thymidine and [3H]leucine into the cells in a dose-dependent fashion; the approximate half-maximal stimulation was induced with 1.5 X 10(-10)M. Platelet-derived growth factor (PDGF) had an additive effect with EGF on DNA synthesis by VSMC. Preincubation of VSMC with unlabeled EGF resulted in a substantial reduction in the number of receptors without changing the affinity, suggesting receptor "down-regulation" mechanism. These data indicate that rat aortic VSMCs have specific receptors for EGF, and suggest that EGF, in addition to PDGF, is also involved in the cell growth of VSMC.  相似文献   

11.
Binding experiments with 125I-atrial natriuretic factor (ANF) followed by covalent attachment with disuccimidyl suberate show that the peptide binds predominantly to a protein of apparent molecular mass of 66,000 daltons on the cell surface of cultured bovine aortic smooth muscle cells. A minor protein species of 180,000 Mr is also visualized after cross-linking. Endothelial cells, however, whose ANF binding parameters differ substantially from smooth muscle cells, also appear to have qualitatively identical 125I-ANF binding proteins. The identity of these putative proteins, as the ANF receptor, is confirmed by findings that covalent attachment of 125I-ANF is saturable, concentration-dependent, and competed by nanomolar concentrations of unlabeled ANF. Furthermore, other peptide hormones such as angiotensin II, glucagon, or insulin are ineffective in competing for 125I-ANF binding and cross-linking to the receptor.  相似文献   

12.
Fish oil has been reported as having beneficial effects on cardiovascular diseases. Elevated serum lipoproteins, prostaglandins and intracellular free calcium concentrations [( Ca2+]i) of the vasculature and thus the phosphoinositide (PI) turnover may be involved in the pathogenesis of these disorders. Therefore, the effect of fish oil on the potency of both low-density lipoprotein (LDL) and angiotensin II (AII) to stimulate the PI turnover in cultured rat vascular smooth muscle cells (VSMC) has been studied. Furthermore, a possible link between PI turnover activity and thromboxane A2 (TXA2) metabolism in these cells has been investigated. In VSMC cultured for up to 7 weeks with either fish oil or n-3 eicosapentaenoic acid (EPA) a decrease to 5-48% of the LDL-induced inositol trisphosphate (IP3) formation (= 100%) was found. A similar range of decreased IP3 synthesis was observed, when AII was used instead of LDL. Both LDL- and AII-stimulated TXA2 synthesis was suppressed concomitantly within the range 34-60%. Blockade of VSMC TXA2 biosynthesis with either indomethacin or TXA2 synthetase blocker (SQ-80338) inhibited LDL-induced formation of IP3 in a dose-dependent manner. Similar results were obtained, when TXA2 receptor coupling antagonists (SQ-27427 or BM-13177) were used. However, blockers of TXA2 synthesis and of TXA2 receptor binding failed to affect AII-induced formation of IP3.  相似文献   

13.
Confluent monolayers of bovine aortic endothelial cells were examined 2-72 h after exposure to 0.5-5.0 Gy of 60Co gamma-rays. Accumulation of prostacyclin [PGI2, measured as 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha)] in the culture media and PGI2 production stimulated by exogenous arachidonate were correlated with cell detachment and release of lactate dehydrogenase (LDH) activity. Platelet adherence to irradiated and control monolayers also was studied. There were simultaneous time- and dose-dependent increases in cell detachment and in the titers of 6-keto-PGF1 alpha and LDH activity in the culture medium. These changes were evident between 4 and 8 h after 5 Gy or at 24 h after 0.5 Gy. Four hours after 5 Gy, both adherent and detached endothelial cells showed a twofold increase in PGI2 production during a 15-min incubation with arachidonate (10 microM). However, by 72 h this increase was less significant. The accumulation of 6-keto-PGF1 alpha appeared to be related to cell destruction, but radiation also stimulated PGI2 synthesis independent of cell detachment. There was an increased platelet interaction with irradiated monolayers, as a result of platelet adherence to subendothelial matrix exposed after cell detachment. However, irradiation did not alter the nonadherent property of the endothelial cell surface toward platelets.  相似文献   

14.
Using an intracellularly trapped dye, quin 2, effects of adenosine on intracellular free calcium concentrations ([Ca2+]i) were recorded, microfluorometrically, using rat aortic medial vascular smooth muscle cells (VSMCs) in primary culture. Regardless of whether cells were at rest (in 5 mM K+), at K+-depolarization (in 55 mM K+) or at Ca2+ depletion (in Ca2+-free media), adenosine induced a rapid reduction of [Ca2+]i, following which there was a gradual increase to pre-exposure levels, in cells at rest and in the case of Ca2+ depletion. Only when the cells were depolarized (55 mM K+) did adenosine induce a new steady [Ca2+]i level, lower than the pre-exposure value. These findings indicate that decrease in [Ca2+]i by adenosine is one possible mechanism involved in the adenosine-mediated vasodilatation, and that adenosine decreases [Ca2+]i by direct extrusion, by sequestration, or by inhibiting the influx of Ca2+ into VSMCs.  相似文献   

15.
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors.  相似文献   

16.
We have compared the production of prostaglandins in fibroblast-like cells and endothelial cells in culture. Of the fibroblasts studied 10T12, SHE, BP6T and KD produce significant amounts of PGI2, PGE2 and PGF2F2 under optimal culture conditions, but only 3T3 and BHK produce TxA2 in addition to PGI2. The adult bovine aortic endothelial cells (ABAE) and fetal bovine heart endothelium (FBHE) synthesise PGI2 but not TxA2, either from endogenous or exogenous substrates. Both cultured endothelial cells and fibroblasts apparently lack 15-hydroxyprostaglandin dehydrogenase pathway and the ability to convert 6-Keto PGF into 6-Keto PGE1. PGI2 production by ABAE was 3–5 times that of FBHE, about twice that of SHE cells and 6–8 times that of 10T12 or BP6T cells. Supernatants or media obtained from these cells inhibited aggregation of human platelet-rich plasma, a known biological effect of PGI2. This effect was abolished when cell monolayers were preincubated with indomethacin or tranylcypromine. RIA and chromatographic data of 6-Keto PGF from these experiments confirmed that the inhibition of platelet aggregation was due to the formation of PGI2. The production of all prostanoids by endothelial cells or fibroflasts was significantly higher during the exponential phase of growth as compared to confluent monolayers. We propose that fibroblasts 10T12 or SHE can serve as useful experimental models for the study of metabolism and transport of PGI2 and/or TxA2 in cells of nonendothelial nature.  相似文献   

17.
18.
Biosynthesis of prostanoids was studies in vascular slices of human umbilical arteries, piglet aorta and vena cava as well as in cultured vascular cells of piglet aorta. After preincubation with radioactive labeled arachidonic acid, prostanoids in the incubation media of slices or cultured cells were measured by radioimmunoassay or by radioactivity determination of labeled compounds following separation on reserved-phase high performance liquid chromatography. In all vascular slices 6-keto-PGF1α was the main prostanoid found, followed by PGE2. Thromboxane B2 and PGF2α were also formed, but only in trace amounts. In cultured cells taken from the three layers of the vascular wall, the prostanoid profiles differed markedly from those obtained from vascular slices. Each cell strain showed a specific prostanoid pattern. Endothelial cells synthesized predominantly 6-keto-PGF1α and PGF2α. In smooth muscle cells no 6-keto-PGF1α could be detected; here the predominant prostanoid was PGE2. PGF2α was formed in smaller quantities. Fibroblasts synthesized all prostanoids (PGE2, PGF2α, TXB2, 6-keto-PGF1α), PGE2 and PGF2α being the major products. In vascular slices and in cultured endothelial cells, the predominant prostacyclin derivative detected was 6-keto-PGF1α; the enzymatic PGI2-metabolite, 6,15-diketo-PGF1α, could be detected only in piglet vena cava slices in small amounts.  相似文献   

19.
Antibodies raised against the fibronectin receptor of rat hepatocytes recognized one protein (Mr 120 and 135 kDa for unreduced and reduced samples, respectively) in immunoblotting of solubilized rat liver endothelial cells (LEC). The antibodies specifically precipitated a 200-kDa protein together with the 135-kDa component from 125I-labeled LEC. Spreading of LEC on fibronectin, but not on laminin or collagen, was inhibited by monovalent Fab fragments of the antibodies, implicating that the 135/200-kDa complex is a specific fibronectin receptor. The results indicate that LEC, hepatocytes, and fibroblasts of rat carry different fibronectin receptors, suggesting that the interaction of fibronectin with these cells may have different functional roles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号