首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine mAb to CD13, CD14, and class II MHC, are able to mobilize calcium in normal human monocytes and enhance superoxide production in primed cells. Antibodies to CD35 (CR1) also cause a minor calcium response in some individuals. Antibodies to CD11a, CD11b, CD11c, CD15, CD17, CD18, and CD45 do not activate monocytes. The ability of mAb to cause monocyte activation is not only dependent on the Ag with which they react but also on the isotype of the antibodies and the individual from whom the monocytes were obtained. It is shown that this is because the mAb that activate monocytes do so by formation of Ag-antibody-FcR complexes. F(ab')2 fragments of mAb to CD13 and CD14 do not therefore activate monocytes even when cross-linked with F(ab')2 anti-mouse Ig but do so when cross-linked with intact anti-mouse Ig. These data indicate that activation via the FcR requires perturbation of this receptor but does not necessarily require cross-linking of one FcR to another. Antibody-coated particles or cells able to bind to cell surface receptors on monocytes other than the FcR would thus augment FcR-mediated activation.  相似文献   

2.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

3.
Apoptosis, programmed cell death, was previously shown to be induced by the mAb anti-APO-1 (IgG3, kappa) by binding to the APO-1 cell surface Ag, a new member of the nerve growth factor/TNF receptor superfamily. To investigate the role of the Ig H chain Fc regions we compared induction of apoptosis by the original mAb IgG3 anti-APO-1 with anti-APO-1 F(ab')2 fragments and different anti-APO-1 isotypes (IgG1, IgG2b, IgG2a, and IgA) isolated by sequential sublining. We found that IgG3 was the most active isotype; IgG1, IgG2a, and IgA showed intermediate activity, and IgG2b and F(ab')2 were inactive. Cytotoxic activity of the inactive or less active antibody preparations was fully reconstituted by protein A, anti-mouse Ig, or anti-mouse Ig F(ab')2, respectively. Thus, APO-1-mediated induction of apoptosis was dependent on efficient cross-linking of APO-1 cell surface Ag, indirectly augmented by anti-APO-1 Fc-Fc self-aggregation. Because of their different in vitro activity we selected IgG3-, IgG2b-, and IgA anti-APO-1 to test their antitumor activity against solid human B lymphoblastoid tumors in SCID mice. The isotypes showed a different serum half-life (IgG3: 9.2-10.4 days, IgG2b: 1.9-2.6 days, and IgA: 14.1-29.2 h) and a different initial tumor localization 4 h after i.p. injection (IgG3 around the blood vessels, IgG2b homogeneously, and IgA heterogeneously distributed in the tumor). All antibody preparations induced tumor regression by induction of apoptosis, even IgG2b anti-APO-1 inactive in vitro without cross-linking. The activity of IgA anti-APO-1, which did not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity indicates that apoptosis may be used as the main if not the only mechanism of induction of tumor regression in vivo. As with in vitro, IgG3 anti-APO-1 was the most effective isotype also in vivo. This result suggests that cross-linking of APO-1 on the tumor cell surface may also be required for tumor regression by apoptosis in vivo. Taken together, our data show that selective targeting of apoptosis to tumors may be an efficient antitumor mechanism.  相似文献   

4.
We have utilized monoclonal antibodies against the two IgG Fc receptors (p40 and p72) of U937 cells to stimulate the release of superoxide. The monoclonal antibody (mAb) specific for p40 (IV3) has been described elsewhere. A murine IgG1 mAb specific for the high affinity p72 Fc receptor (designated mAb FcR32 or simply mAb 32) bound to the same p72 precipitated by Sepharose-human IgG as shown by preclearing experiments and by identical isoelectric focussing patterns. Binding of mAb 32 to p72 was independent of the Fc region of the antibody since Fab' fragments of mAb 32 affinity adsorbed p72. The binding of both mAb 32 and human IgG1 to the intact U937 cell was not reciprocally inhibitory, indicating that mAb 32 does not interfere with the ligand binding site of p72. mAb 32 bound to human monocytes, U937, and HL60 cells, but not to granulocytes or lymphocytes. U937 cells cultured in gamma-interferon and 1,25-dihydroxycholecalciferol generated superoxide when incubated with mAb 32 or IV3 followed by cross-linking with F(ab')2 anti-murine Ig. Incubation with mAb 32 or IV3 alone or with 3 of 5 other anti-U937 mAbs cross-linked with anti-murine Ig did not result in superoxide generation. Immune complex-mediated superoxide production was inhibited 80% by IgG, but not by mAb 32 or IV3.  相似文献   

5.
Monocytes cause OKT3-treated T cells to secrete IL-2 and to lose cell surface T3. We have studied the fate of the "lost" T3. Immunofluorescence microscopy on permeabilized cells showed that monocytes induce T cells to internalize T3. Furthermore, experiments with radioiodinated T cells showed that the internalized T3 was not degraded and exhibited an unaltered polypeptide composition for at least 16 hr. The role of Fc receptors in inducing internalization was also investigated. Fc receptors were depleted from monocytes by allowing the phagocytes to spread on immune complexes. Such depleted monocytes exhibit a fourfold reduction in their ability to promote both internalization of T3 and production of IL-2. A comparable reduction is seen if F(ab')2 fragments of OKT3 were employed in place of intact IgG. Furthermore, monocyte Fc receptors that have been blocked by heat-aggregated human IgG also show much reduced capability for induction of OKT3-mediated T-cell proliferation. We therefore conclude that Fc receptors bind to the Fc domain of OKT3 and thereby cause OKT3-treated T cells to internalize T3 and become activated.  相似文献   

6.
7.
GK1.5 is a rat mAb that recognizes the mouse CD4 Ag. It has been shown to deplete CD4+ cells in vivo and to be immunosuppressive. To evaluate the effect of the C region of this antibody in achieving cell depletion, chimeric antibodies, each having the rat GK1.5 V regions and one of the four mouse IgG C region isotypes, were compared with the native rat antibody. The chimeric antibodies and the native antibody were tested for their ability to mediate in vitro C-dependent cytotoxicity, in vivo cell depletion, and prolongation of allogeneic skin graft survival and suppression of alloantibody production. In vitro C-dependent cytotoxicity assays revealed that rat IgG2b and the chimeric antibodies containing mouse IgG2a, mouse IgG2b, and mouse IgG3 were effective in lysing CD4+ lymphocytes whereas mouse IgG1 was ineffective. In vivo studies of CD4+ cell depletion showed that mouse IgG2a, rat IgG2b, and mouse IgG2b were effective isotypes, mouse IgG1 was less effective, and mouse IgG3 did not deplete CD4+ cells. A correlation was found between the ability of an isotype to deplete CD4+ cells in vivo and its ability to prolong the survival of skin allografts and to suppress alloantibody production. The nondepleting mouse IgG3 was ineffective in these assays. Overall the most effective mouse isotype was IgG2a which was as effective as rat IgG2b. These results indicate 1) that syngeneic isotypes of mAb can cause cell depletion and consequently the prolongation of allograft rejection and suppression of alloantibody production; 2) that not all isotypes are equally effective; and 3) that the ability of a given isotype to deplete cells in vivo does not correlate with its ability to mediate C-dependent lysis in vitro. Our results are consistent with the hypothesis that in vivo depletion of cells is mediated by opsonization and binding through the FcR.  相似文献   

8.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

9.
Ig Fc receptors bind to immune complexes through interactions with the Fc regions of specific Ab subclasses to initiate or inhibit the defense mechanisms of the leukocytes on which they are expressed. The mechanism of action of IgG-based therapeutic molecules, which are routinely evaluated in nonhuman primate models, involves binding to the low-affinity FcRIII (CD16). The premise that IgG/CD16 interactions in nonhuman primates mimic those present in humans has not been evaluated. Therefore, we have identified and characterized CD16 and associated TCR zeta-chain homologues in rhesus macaques, cynomolgus macaques, baboons, and sooty mangabeys. Similar to humans, CD16 expression was detected on a lymphocyte subpopulation, on monocytes, and on neutrophils of sooty mangabeys. However, CD16 was detected only on a lymphocyte subpopulation and on monocytes in macaques and baboons. A nonhuman primate rCD16 generated in HeLa cells interacted with human IgG1 and IgG2. By contrast, human CD16 binds to IgG1 and IgG3. As shown for humans, the mAb 3G8 was able to block IgG binding to nonhuman primate CD16 and inhibition of nonhuman primate CD16 N-glycosylation enhanced IgG binding. Clearly, differences in interaction with IgG subclasses and in cell-type expression should be considered when using these models for in vivo evaluation of therapeutic Abs.  相似文献   

10.
In the present study we have analyzed the in vitro activation requirements of freshly isolated CD4-CD8- "double-negative" (DN) human peripheral blood T cells. DN cells were isolated from E+ cells by removal of CD4+, CD8+, and CD16+ cells through consecutive steps of C'-mediated lysis and panning. While the majority (79.0 +/- 12.0%) of DN cells were TCR gamma delta+ as shown by staining with mAb TCR delta-1, a minor fraction (6.7 +/- 4.7%) expressed TCR alpha beta as revealed by staining with mAb BMA031. Within the gamma delta+ DN fraction, most cells reacted with mAb Ti gamma A which delineates a V gamma 9JPC gamma 1 epitope, whereas a minor fraction stained with mAb delta TCS-1 which identifies a V delta 1J delta 1 epitope. Functional studies performed at low cell number (1000) per microculture indicated that DN cells can be activated by anti-CD3 mAb, PHA and allogeneic stimulator cells, provided that exogenous growth factors are supplied. Both rIl-2 and rIl-4 acted as efficient growth factors for DN cells, and a synergistic stimulatory effect of rIl-2 and rIl-4 was observed when DN cells were cocultured with allogeneic LCL stimulator cells. As compared to unseparated E+ cells, isolated DN responder cells had a reduced capacity to secrete Il-2 upon PHA stimulation in the presence of LCL feeder cells. The majority of DN cells maintained their CD3+ CD4-CD8- phenotype upon coculture with allogeneic LCL stimulator cells. These data demonstrate that CD3+ DN cells in human peripheral blood are heterogeneous with respect to TCR expression. In addition, they show that freshly isolated DN cells are deficient in Il-2 production but may be normally stimulated by anti-CD3, PHA, or alloantigen if exogenous growth factors (rIL-2 and/or rIl-4) are provided.  相似文献   

11.
Our results support the hypothesis that binding the low affinity Fc epsilon R (Fc epsilon R-II, CD23) on IgE-secreting B cells, directly suppresses IgE production. IgE production from AF-10/U266 (a human IgE plasmacytoma) decreased upon incubation with anti-IgE mAb or IgE:anti-IgE immune complexes (IgE-IC). Synthesis was suppressed a maximum of 51% with 10 micrograms/ml of IgE-IC after a 24-h incubation. Spontaneous in vitro IgE synthesis from the B cells of highly atopic individuals was also inhibited in a similar fashion. This effect was isotype specific as IgA or IgG immune complexes did not alter IgE production from AF-10 nor did IgE-IC affect IgA or IgG synthesis from lymphoblastoid cell lines making IgG (GM1500 and RPMI 8866) or IgA (GM1056). U266/AF-10 cells displayed both membrane IgE (greater than 90%) and Fc epsilon R-II (23%). To evaluate the role of these membrane proteins in the observed suppression of IgE synthesis, we treated U266/AF-10 cells with IgE-IC that bound Fc epsilon R-II but could not bind membrane IgE, as the mAb used was directed against an idiotypic determinant on the myeloma IgE (PS) used to make the IgE-IC. Suppression was maximal (greater than 50%) with these complexes at 0.1 micrograms/ml and at a 1/1 ratio of mAb anti-IgE to human myeloma IgE. When IgE-IC were used that were constructed with heat denatured IgE or F(ab')2 fragments of IgE, suppression was abrogated indicating IgE-Fc epsilon R binding was required. Neither PS IgE nor mAb 5.1 (the components of IgE-IC) alone affected IgE synthesis. Furthermore, a mAb binding directly to CD23 suppressed IgE synthesis from AF-10 up to 60%. Using limiting dilution analysis, we determined that IgE production per AF-10 cell was constant (0.9 pg/cell/24 h), independent of cell density and cells incubated with IgE-IC were uniformly suppressed. To clarify the mechanism of IgE-IC-induced suppression on AF-10 cells, we assessed both the proliferative rate and cell cycle distribution upon incubation with IgE-IC. There was no correlation between IgE production and [3H]TdR incorporation by AF-10 cells incubated with IgE-IC or anti-CD23 mAb. The distribution of cells within the cell cycle was unaffected by these treatments, with 60% of the cells in G1. These results define a direct role for the Fc epsilon R-II on B cells in the regulation of ongoing IgE synthesis.  相似文献   

12.
The role of the Fc region of trinitrophenylated (TNP)-immunoglobulins (Ig) in their ability to induce tolerance in immature B cells was examined. With the use of B cells from neonatal mice, tolerogens that could or could not bind to Fc receptors were assessed for their ability to induce tolerance. This was accomplished by tolerizing spleen cells in bulk culture and assessing the degree of tolerance by challenging the cells with the thymus-independent antigen TNP-Brucella abortus (TNP-BA) in limiting dilution cultures. It was found that by using tolerogens containing 10 to 11 haptens per Ig molecule, immature B cells were very susceptible to tolerance induction. Mature B cells were not as susceptible. This increased susceptibility was independent of the Fc portion of the tolerogen, because TNP11-HGG and a TNP10-F(ab')2 induced equivalent degrees of unresponsiveness. When the TNP density was lowered to approximately five haptens per Ig molecule, those Ig molecules that contained Fc portions were superior tolerogens with the use of B cells from 6-day-old mice. Thus, a TNP4-HGG, TNP7-mouse IgG1, and TNP6-mouse IgG2a were more effective tolerogens than either TNP5-F(ab')2 or TNP6-mouse IgG3. These results confirm previous findings that immature B cells are inherently more susceptible to tolerance induction than mature B cells. They also suggest that very lightly haptenated Ig molecules may depend on Fc receptor-binding for effective tolerance induction. Finally, by means of a cytofluorograph, the surface IgD (sIgD) and sIgM phenotypes of splenic B cells from neonates of increasing age were determined. When comparing the phenotype of maturing cells with their tolerance susceptibilities, a correlation between the appearance of sIgD and the acquisition of resistance to tolerance was observed.  相似文献   

13.
Bacterial Protein A (PrtA) and Protein G (PrtG) are widely used for affinity purification of antibodies. An understanding of how PrtA and PrtG bind to different isotypes of immunoglobulin type G (IgG) and to their corresponding Fc fragments is essential for the development of PrtA and PrtG mimetic ligands and for the establishment of generic processes for the purification of various antibodies. In this paper, the interactions between the two IgG-binding proteins and IgG of two different subclasses, IgG1 and IgG4, as well as their analogous Fc fragments have been studied by isothermal titration calorimetry. The results indicate that both protein ligands bind IgG and Fc fragments strongly with Ka values in the range of 10(7) -10(8) M(-1) and for both ligands, the interaction with both IgG isotypes is enthalpically driven though entropically unfavorable. Moreover, variation in the standard entropic and standard enthalpic contribution to binding between the two isotypes as well as between IgG and Fc fragment implies that the specific interaction with PrtA varies according to IgG isotype. In contrast to PrtA, PrtG bound to F(ab')(2) fragment with a Ka value of 5.1 × 10(5) M(-1) ; thus underscoring the usefulness of PrtA as a preferred ligand for generic antibody purification processes.  相似文献   

14.
A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10-100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.  相似文献   

15.
Activation of T cells by mAb to the CD3 molecular complex induces the differentiation of many more Ig-secreting cells (ISC) from resting human B cells in bulk cultures than do other modes of polyclonal B cell activation. In the current experiments, a limiting dilution assay was used to demonstrate that this increase in ISC generation reflects an increased frequency of responding B cells. Highly purified B cells were cultured at densities of between 1000 cells and 0.5 cell per microwell with fresh, mitomycin C-treated T cells (T mito) or T cell clones stimulated by immobilized mAb to CD3. After 5 days in culture, the number of wells containing ISC was determined, and the frequency of responding B cells was calculated. The proportion of B cells responding to anti-CD3-stimulated T cells was very large (10.7 +/- 2.8%) and greatly surpassed that induced by other polyclonal activators. B cells cultured with anti-CD3-stimulated T cell clones responded better than did those cultured with T mito. The addition of exogenous IL-2 or IL-6 to cultures supported by activated T mito enhanced the frequency of responding B cells, whereas IL-4 did not increase the generation of ISC and inhibited the augmentation of B cell responses induced by IL-2. Supplementation of cultures with mitomycin C-treated B cells as accessory cells had less of an effect. The addition of both accessory cells and IL-2 markedly increased B cell responsiveness, with precursor frequencies of 60 to 80% noted. In some experiments, cultures were carried out for 7 to 14 days and supernatants were analyzed for IgM, IgG, and IgA secretion. B cells activated by anti-CD3-stimulated T cells produced all three Ig isotypes. When the classes of Ig produced by single B cells were examined, it was observed that the stimulation of individual B cell precursors led to the production of multiple Ig isotypes, suggesting that isotype switching occurs in these cultures. These results demonstrate that under optimum culture conditions, T cells stimulated with immobilized anti-CD3 can activate the majority of human peripheral blood B cells to produce Ig and induce isotype switching by many.  相似文献   

16.
Two anti-CD3 antibodies and their Fab/F(ab')2 fragments were compared with regard to their requirement for secondary signals and generations of intracellular messengers. The anti-CD3 antibody BMA030 was found to require monocyte contact to elicit T-cell mitogenesis. Cross-linking by plastic-bound goat anti-mouse antibodies (panning) failed to activate T cells, even in the presence of recombinant IL-1 or IL-2. In contrast, crosslinking of the anti-CD3 antibody Leu4 or Leu4 fragments was mitogenic in monocyte-free cultures. Measurements of intracellular Ca2+ ([Ca2+]i) and generation of inositol phosphates revealed that binding (+/- panning) of BMA030, Leu4, and their F(ab')2 fragments generated similar amounts of intracellular messengers and thus failed to explain the different responsiveness to passive crosslinking. Since the generation of these messengers was not necessarily followed by proliferation but was always observed when mitogenesis occurred, we conclude that the elevation of [Ca2+]i and the production of inositol phosphates are required but not sufficient to trigger mitogenesis.  相似文献   

17.
Guinea pig B cells were found to proliferate when co-stimulated with F(ab')2 of rabbit anti-guinea pig IgM and human 12-kDa B cell growth factor (BCGF), though the proliferation did not occur with the replacement of the F(ab')2 by its parent IgG antibody. In addition, the intact antibody inhibited the proliferation induced by F(ab')2 of anti-IgM and BCGF. Because both two distinct types of FcR for IgG on the B cells, one specific for IgG2 (Fc gamma 2R) and the other for both IgG2 and IgG1 (Fc gamma 1/gamma 2R), can bind rabbit IgG, we determined whether they participate in the inhibition of the B cell proliferation by intact anti-guinea pig IgM antibody. Blocking Fc gamma 1/gamma 2R by F(ab')2 of anti-Fc gamma 1/gamma 2R mAb significantly reversed the inhibitory effect of intact anti-IgM antibody. F(ab')2 of anti-Fc gamma 2R mAb, however, was not effective. Furthermore, guinea pig IgG1 and IgG2 anti-rabbit IgG antibodies suppressed similarly the B cell proliferation induced by F(ab')2 of rabbit anti-IgM and BCGF. These results show that between these two types of Fc gamma R on B cells, Fc gamma 1/gamma 2R alone is involved in the regulation of anti-IgM and BCGF-induced B cell proliferation, and inhibits the response when cross-linked to the surface IgM.  相似文献   

18.
We studied the interaction of bispecific mouse mAb with human IgG Fc receptors, and assessed their ability to activate the monocytic cell line U937. Binding of monomeric hybrid anti-HuIgA1/HRP mAb to the high-affinity IgG receptor, Fc gamma RI, on U937 cells was only observed when mAb with one or more mIgG2a H chains (hybrid mIgG1-2a, mIgG2a-2b, and mIgG2a-2a) were used. These Fc gamma RI-bound hybrid mAb were capable of enhancing the internal free cytosolic Ca2+ concentration ([Ca2+]i) in U937 cells only when bound mIgG were cross-linked using F(ab')2 fragments of goat anti-mIg antibody. A hybrid mIgG1-2a mAb were cross-linked using goat anti-mIgG1 antibody, showing that the hybrid mAb themselves mediate the induction of Ca2+ increase. Remarkably, anti-Fc gamma RII mAb IV.3 was able to inhibit the Ca2+ increase induced via mIgG2a-1 or mIgG1-2a hybrid mAb completely, despite the fact that we could not detect any effect of IV.3 on binding of monomeric hybrid mIgG1-2a or mIgG2a-1 mAb to U937. The hybrid mAb were also able to induce lysis of HuIgA1-coated E using U937 effector cells. This lysis was completely inhibited by preincubation of U937 cells with mIgG2a mAb TB-3, which blocks Fc gamma RI via its Fc-part ("Kurlander phenomenon"). In contrast, Fc gamma RII-blocking mAb IV.3 and CIKM5 caused a significant enhancement of the antibody-dependent cellular cytotoxicity (ADCC) activity mediated by hybrid mIgG1-2a and mIgG2a-2b mAb. This enhancement did not occur when the parental anti-HuIgA1/2a or the hybrid anti-HuIgA1/HRP/2a-2a mAb were evaluated for ADCC activity. These findings suggest that hybrid mAb not only can bind to Fc gamma RI, but can mediate functional activation of myeloid cells. Given the effect of mAb IV.3 on [Ca2+]i changes and ADCC triggered through IgG1-2a mAb, we suggest that Fc gamma RII may have a role in the regulation of Fc gamma RI-triggered functions or signaling.  相似文献   

19.
In the preceding paper it was suggested that the tumour localisation of 125I-labelled syngeneic rat monoclonal antibodies (mAbs) may be limited in immunocompetent hosts by the presence of competing endogenous serum antibodies. In syngeneic congenitally athymic (nu/nu) and cyclosporin-A-treated rats (both of which fail to mount immune responses to tumour antigens) increased uptake of mAbs in tumour tissue was obtained compared with that in immunocompetent animals. However, in the case of IgG2b and IgG1 mAbs, this appeared to be due primarily to enhanced "non-specific" localisation mediated by Fc binding, since it was abolished by the use of F(ab')2 fragments with two out of three mAbs tested. Normal tissue distribution was also influenced by host immune status: in nu/nu rats the uptake of IgG2b mAbs in the spleen was up to fivefold higher than that previously found in normal animals and the levels in liver were also increased. This effect was not seen in cyclosporin-A-treated hosts, suggesting that the reticuloendothelial system of congenitally athymic animals contains cells with enhanced IgG2b-FcR activity. This hypothesis was strengthened by the observation that splenic uptake was reduced by either the use of F(ab')2 fragments, or prior "blockade" of Fc receptors by "cold competition" with excess unlabelled IgG2b mAbs. This blockade could not be effected by mAbs of any other isotype or by IgG2b F(ab')2 fragments. The former manoeuvre resulted in higher tumour specificity ratios but usually at the expense of reduced levels of tumour associated radiolabelled mAb. The latter was found to increase "absolute" tumour localisation by up to 35%. In an attempt to characterise further and compare the Fc receptor activity of intratumour and intrasplenic host cells. The distribution of IgG2b mAbs was assayed in 3-week, 8-week and 12-week-old rats. We were able operationally to distinguish the activity of these two categories of cells, suggesting that they represent either different lineages or differentially activated subpopulations: the splenic IgG2b binding was fully expressed in weanling nu/nu rats whereas the FcR activity of cells infiltrating MC24 sarcoma was limited in 3-week-old compared with 8-12-week-old hosts. A further difference was apparent in the subclass "preference" of FcR binding: in immunodeprived rats both IgG1 and IgG2b mAbs were able to bind to tumour-infiltrating host cells, but uptake of IgG1 mAbs in the spleen was always low and not reduced further by the use of F(ab')2 fragments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The studies herein describe a B cell hybridoma-derived, low m.w. (less than 1000 Da), hydrophilic mediator denoted B cell activator (BCA). BCA stimulates B cell expression of IgE-specific FcR (Fc epsilon RII or CD23) in a manner similar to IL-4. However, BCA can be readily distinguished from IL-4 because it does not 1) enhance B cell Ia expression; 2) bind 11B11 anti-IL-4 mAb; or 3) elicit superinduction of Fc epsilon RII expression or IgE production in cultures of LPS-activated B cells. Moreover, BCA is considerably more mitogenic than IL-4 for LPS-activated B cells and, in contrast to IL-4, lacks mitogenicity for anti-mu-activated B cells. BCA can enhance IgG2b and IgG3 production by LPS-activated B cells, responses that are suppressed by IL-4. BCA alone did not stimulate IgE and IgG1 production by LPS-activated B cells, but exerted synergistic activity when combined with IL-4 in stimulating secretion of these antibody isotypes. Finally, secondary Ag-driven IgG1, IgE, and IgA antibody responses can be stimulated by BCA in vitro. Thus, BCA appears to be a novel mediator with broad B cell activation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号