首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
By employing a bovine UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyl transferase (O-GalNAc transferase) cDNA as a probe, we isolated four overlapping cDNAs from a porcine lung cDNA library. Both the nucleotide sequence of the porcine cDNA and the predicted primary structure of the protein (559 amino acids) proved to be very similar to those of the bovine enzyme (95% and 99% identity, respectively). Transient expression of the clone in COS-7 cells, followed by enzymatic activity assays, demonstrated that this cDNA sequence encodes a porcine O-GalNAc transferase. The intracellular O-GalNAc transferase activity was increased approximately 100-fold by transfecting cells with the porcine cDNA.Abbreviations O-GalNAc transferase UDP-N-acetylgalactosamine: polypeptideN-acetylgalactosaminyltransferase - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - GnT-III UDP-N-acetylglucosamine: -mannoside -1,4N-acetylglucosaminyltransferase III  相似文献   

2.
3.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

4.
The 4'-phosphopantetheinyl transferases (PPTases) catalyze the transfer of a 4'-phosphopantetheine moiety from coenzyme A to phosphopantetheine-dependent carrier proteins. The carrier proteins (CPs) are required for the biosynthesis of peptides synthesized by nonribosomal peptide synthases and the biosynthesis of fatty acids and polyketides. A single PPTase (PcpS) is present in the pathogenic bacterium Pseudomonas aeruginosa. Several pathovars of Pseudomonas syringae produce the chlorosis-inducing phytotoxin coronatine. Structural genes for coronatine biosynthesis include two ACPs, two ACP domains, and one peptidyl carrier protein (PCP) domain. To gain insight into factors affecting coronatine biosynthesis, the PPTase of P. syringae pv. syringae FF5 has been investigated. A single PPTase gene (pspT) was amplified from this organism by PCR. The translation product PspT exhibited 62% identity to PcpS as well as higher levels of identity to other, uncharacterized Pseudomonad PPTases. PspT was overproduced in soluble form in Escherichia coli and its enzymatic properties were compared with those of PcpS. PspT exhibited broad substrate specificity, and it displayed the highest activity with a PCP domain. In contrast, the most efficient substrates for PcpS are CPs from primary metabolism. These results indicate phosphopantetheinyl transferases from different Pseudomonas sp. may vary significantly in their enzymatic properties.  相似文献   

5.
The C-1-phosphonate analogue of UDP-GlcNAc has been synthesized using an alpha-configured C-1-aldehyde as a key intermediate. Addition of the anion of diethyl phosphate to the aldehyde produced the hydroxyphosphonate. The configuration of this key intermediate was determined by X-ray crystallography. Deoxygenation, coupling of the resulting phosphonic acid with UMP and deprotection gave the target molecule as a di-sodium salt. This analogue had no detectable activity as an inhibitor of (OGT).  相似文献   

6.
Glutathione transferases (GSTs) are ubiquitous detoxification enzymes that conjugate hydrophobic xenobiotics with reduced glutathione. The silkworm Bombyx mori encodes four isoforms of GST Omega (GSTO), featured with a catalytic cysteine, except that bmGSTO3-3 has an asparagine substitution of this catalytic residue. Here, we determined the 2.20-Å crystal structure of bmGSTO3-3, which shares a typical GST overall structure. However, the extended C-terminal segment that exists in all the four bmGSTOs occupies the G-site of bmGSTO3-3 and makes it unworkable, as shown by the activity assays. Upon mutation of Asn29 to Cys and truncation of the C-terminal segment, the in vitro GST activity of bmGSTO3-3 could be restored. These findings provided structural insights into the activity regulation of GSTOs.  相似文献   

7.
Kim BJ  Mangala SL  Hayashi K 《FEBS letters》2005,579(14):3075-3080
Four sites of the non-homologous region (coding amino acid residues of 347, 421, 466 and 533) of a gene were randomly selected for splitting to investigate the function of β-glucosidase from Agrobacterium tumefaciens in the co-refolding of peptides into the catalytically active enzyme. As a result of gene splitting, four N- and C-terminal domain peptides were obtained as insoluble inclusion bodies. No catalytic activity was observed when these fragments refolded individually. However, a considerable amount of activity was restored when the two fragments derived from N- and C- terminal peptides were co-refolded together. The deletion of amino acid residues in the non-homologous region resulted in a complete loss of enzyme activity, which suggests that truncation of amino acids in this region strongly affects the co-refolding ability of the enzyme to maintain activity.  相似文献   

8.
【目的】在原核表达体系中实现大肠杆菌来源的喹啉酸磷酸核糖转移酶(Quinolinic acid phosphoribosyl transferase,QPRT)和烟酸磷酸核糖转移酶(Nicotinic acidphosphoribosyl transferase,NaPPT)的表达与纯化,并利用酶的生物催化作用实现2,3-二羧酸喹啉的2位选择性脱羧得到烟酸【。方法】通过PCR扩增分别得到编码QPRT和NaPPT的基因片段,构建成原核表达质粒pET28a-NadC和pRSETB-PncB,在Escherichia coli(E.coli)中对其进行表达,在体外对目标蛋白进行纯化并利用高效液相色谱法(HPLC)检测酶催化反应的发生。【结果】成功表达纯化得到QPRT和NaPPT,检测结果表明在这两个酶的生物催化作用下可实现喹啉酸的2位选择性脱羧。  相似文献   

9.
For bacteria, the structural integrity of its cell wall is of utmost importance for survival, and to this end, a rigid scaffold called peptidoglycan, comprised of sugar molecules and peptides, is synthesized and located outside the cytoplasmic membrane of the cell. Disruption of this peptidoglycan layer has for many years been a prime target for effective antibiotics, namely the penicillins and cephalosporins. Because this rigid layer is synthesized by a multi-step pathway numerous additional targets also exist that have no counterpart in the animal cell. Central to this pathway are four similar ligase enzymes, which add peptide groups to the sugar molecules, and interrupting these steps would ultimately prove fatal to the bacterial cell. The mechanisms of these ligases are well understood and the structures of all four of these ligases are now known. A detailed comparison of these four enzymes shows that considerable conformational changes are possible and that these changes, along with the recruitment of two different N-terminal binding domains, allows these enzymes to bind a substrate which at one end is identical and at the other has the growing polypeptide tail. Some insights into the structure-function relationships in these enzymes is presented.  相似文献   

10.
11.
Three amides, N-salicyloyl-2-aminopropan-1,3-diol (1) and 1-acetyl-N-salicyloyl-2-aminopropan-3-ol (2) including a natural product, N-salicyloyl-2-aminopropan-1-ol (3) were isolated from an ethyl acetate extract of the culture filtrate of Streptomyces hygroscopicus [corrected] The structures of these compounds were unambiguously established by interpretation of their spectral data including, a series of 1D and 2D-NMR and MS analyses. Compounds 1-3 showed significant antibacterial activity against a wide range of Gram positive and Gram negative bacteria.  相似文献   

12.
Post-translational modification of protein serines/threonines with N-acetylglucosamine (O-GlcNAc) is dynamic, inducible and abundant, regulating many cellular processes by interfering with protein phosphorylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, both encoded by single, essential, genes in metazoan genomes. It is not understood how OGT recognises its sugar nucleotide donor and performs O-GlcNAc transfer onto proteins/peptides, and how the enzyme recognises specific cellular protein substrates. Here, we show, by X-ray crystallography and mutagenesis, that OGT adopts the (metal-independent) GT-B fold and binds a UDP-GlcNAc analogue at the bottom of a highly conserved putative peptide-binding groove, covered by a mobile loop. Strikingly, the tetratricopeptide repeats (TPRs) tightly interact with the active site to form a continuous 120 Å putative interaction surface, whereas the previously predicted phosphatidylinositide-binding site locates to the opposite end of the catalytic domain. On the basis of the structure, we identify truncation/point mutants of the TPRs that have differential effects on activity towards proteins/peptides, giving first insights into how OGT may recognise its substrates.  相似文献   

13.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

14.
The pH and denaturant stability of bovine milk galactosyl transferase was studied with particular reference both to aspects of published isolation procedures (acid casein precipitation) and to experiments probing the accessibility of reactive thiol groups. As monitored by catalytic activity or fluorescence spectroscopy, the enzyme undergoes an irreversible inactivation and concomitant structure change below pH 5.0, which is extremely rapid below pH 4.4. At catalytic pH (7.5) the enzyme inactivates (unfolds) at ~ 5 m urea, 2.0 m guanidine hydrochloride and 0.6 mm sodium dodecyl sulphate. The latter detergent apparently binds near Trp residues, as evidenced by a large (>10 nm) blue shift. Extreme caution should be taken in any (acid) casein precipitation steps.  相似文献   

15.
The isocoumarins (1-50 microM) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin isolated from Paepalanthus bromelioides, were assessed for antioxidant activity using isolated rat liver mitochondria and non-mitochondrial systems, and compared with the flavonoid quercetin. The paepalantine and paepalantine dimers, but not vioxanthin, were effective at scavenging both 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) and superoxide (O(2)(-)) radicals in non-mitochondrial systems, and protected mitochondria from tert-butylhydroperoxide-induced H(2)O(2) accumulation and Fe(2+)-citrate-mediated mitochondrial membrane lipid peroxidation, with almost the same potency as quercetin. These results point towards paepalantine, followed by paepalantine dimer, as being a powerful agent affording protection, apparently via O(2)(-) scavenging, from oxidative stress conditions imposed on mitochondria, the main intracellular source and target of those reactive oxygen species. This strong antioxidant action of paepalantine was reproduced in HepG2 cells exposed to oxidative stress condition induced by H(2)O(2).  相似文献   

16.
Caesalpinia sappan is a well-distributed plant that is cultivated in Southeast Asia, Africa, and the Americas. C. sappan has been used in Asian folk medicine and its extract has been shown to have pharmacological effects. Two homoisoflavonoids, sappanol and brazilin, were isolated from C. sappan by using centrifugal partition chromatography (CPC), and tested for protective effects against retinal cell death. The isolated homoisoflavonoids produced approximately 20-fold inhibition of N-retinylidene-N-retinyl-ethanolamine (A2E) photooxidation in a dose-dependent manner. Of the 2 compounds, brazilin showed better inhibition (197.93 ± 1.59 μM of IC50). Cell viability tests and PI/Hoechst 33342 double staining method indicated that compared to the negative control, sappanol significantly attenuated H2O2-induced retinal death. The compounds significantly blunted the up-regulation of intracellular reactive oxygen species (ROS), and sappanol inhibited lipid peroxidation in a concentration-dependent manner. Thus, both compounds represent potential antioxidant treatments for retinal diseases. [BMB Reports 2015; 48(5): 289-294]  相似文献   

17.
The recent establishment of high-throughput methods for culturing Drosophila provided a unique ability to screen compound libraries against complex disease phenotypes in the context of whole animals. However, as compound studies in Drosophila have been limited so far, the degree of conservation of compound activity between Drosophila and vertebrates or the effectiveness of feeding as a compound delivery system is not well known. Our comprehensive in vivo analysis of 27 small molecules targeting seven signaling pathways in Drosophila revealed a high degree of conservation of compound activity between Drosophila and vertebrates. We also investigated the mechanism of action of AY9944, one of the Hh pathway antagonists that we identified in our compound feeding experiments. Our epistasis analysis of AY9944 provided novel insights into AY9944’s mechanism of action and revealed a novel role for cholesterol transport in Hh signal transduction.  相似文献   

18.
To date, investigations of the hydrophobic substrate site of the insect Delta class glutathione transferase are limited in number. In the present study, putative hydrophobic site residues of AdGSTD4-4 have been proposed and characterized. These residues are Gln-112, Thr-174, Phe-212, Arg-214, Tyr-215 and Phe-216. It was found that Gln-112 does not contribute significantly to the catalytic properties of AdGSTD4-4. Arg-214, Tyr-215 and Phe-216 made contributions to catalytic properties and the rate-limiting step. Thr-174 and Phe-212 appeared to be important in enzymatic catalysis by stabilizing the active site β1-α1 loop on which the critical catalytic residue Ser-9 is located. The aromatic Phe-212 pi cloud appears to be important for interactions with its hydrophobic size representing an almost equally important factor. The data suggests that these residues are not directly involved in catalysis but exert their influence through secondary interactions. In addition, active site rearrangements occur to bring different residues into play even for conjugation through the same mechanisms. Therefore, due to the conformational rearrangements topologically equivalent residues observed in crystal structures may not perform equivalent roles in catalysis in different GST classes.  相似文献   

19.
Topoisomerase II is required for the viability of all eukaryotic cells. It plays important roles in DNA replication, recombination, chromosome segregation, and the maintenance of the nuclear scaffold. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between arginyl-tRNA-protein transferase (Ate1) and the N-terminal domain of the S. cerevisiae topoisomerase II, including the potential site of interaction. Ate1 is a component of the N-end rule protein degradation pathway which targets proteins for degradation. We also propose a previously unidentified role for Ate1 in modulating the level of topoisomerase II through the cell cycle.  相似文献   

20.
Rabiet MJ  Huet E  Boulay F 《Biochimie》2007,89(9):1089-1106
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号