首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three pure isoenzymes from Candida rugosa lipase (CRL: Lip1, Lip2, and Lip3) were compared in terms of their stability and reactivity in both aqueous and organic media. The combined effect of temperature and pH on their stability was studied applying a factorial design. The analysis of the response surfaces indicated that Lip1 and Lip3 have a similar stability, lower than that of Lip2. In aqueous media, Lip3 was the most active enzyme on the hydrolysis of p-nitrophenyl esters, whereas Lip1 showed the highest activity on the hydrolysis of most assayed triacylglycerides. The highest differences among isoenzymes were found in the hydrolysis of triacylglycerides. Thus, a short, medium, and long acyl chain triacylglyceride was the preferred substrate for Lip3, Lip1, and Lip2, respectively. In organic medium, Lip3 and Lip1 provided excellent results in terms of enantioselectivity in the resolution of ibuprofen (EF value over 0.90) and conversion, whereas initial esterification rate was higher for Lip3. However, the use of Lip2 resulted in lower values of conversion, enantiomeric excess, and enantioselectivity. In the case of trans-2-phenyl-1-cyclohexanol (TPCH) resolution, initial esterification rates were high except for Lip3, which also produced poor results in conversion and enantiomeric excess. The performance of the pure isoenzymes in the enantioselectivity esterification of these substrates was compared with different CRL crude preparations with known isoenzymatic content and the different results could not be explained by their isoenzymatic profile. Therefore, it can be concluded that other factors can also affect the catalysis of CRL and only the reproducibility between powders can ensure the reproducibility in synthesis reactions.  相似文献   

2.
Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-dimethylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5°C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50°C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature.  相似文献   

3.
Immobilized beta-galactosidase was obtained by crosslinking the enzyme with hen egg white using 2% glutaraldehyde. The gel obtained could be lyophilized to give a dry enzyme powder. The pH optimum of both the soluble and immobilized enzyme was found to be 6.8. The immobilized enzyme showed a higher K(m) for the substrates. The extent of enzyme inhibition by galactose was reduced upon immobilization. The stability towards inactivation by heat, urea, gamma irradiation, and protease treatment were enhanced. The bound enzyme as tested in a batch reactor could be used repeatedly for the hydrolysis of milk lactose. The possible application of this system for small-scale domestic use has been suggested.  相似文献   

4.
A copolymer of methacrylic acid (MAA) and N-isopropyl acrylamide (NIPAM) was used as a novel, reversibly soluble-insoluble support whose solubility changes depending on the temperature of the solution. Amylase (Dabiase K-27) immobilized covalently on the thermo-responsive polymer showed good solubility response: the immobilized enzyme (D-MN) was in a soluble state below 32°C, but insoluble above 42°C. D-MN in a soluble state has a high specific activity for the hydrolysis of soluble or uncooked starch. The solubility response of D-NM to changes in the temperature of the solution was more sensitive when 0.5% NaCl was added to a buffer solution (pH 4.5) with D-MN than in the buffer solution without NaCl. D-MN was used successively for repeated hydrolysis reactions of soluble and uncooked starches, in which D-MN was insolubilized either by changing the temperature of the reaction mixture from 30°C to 36°C with 0.5% NaCl or by adjusting the NaCl concentration of the reaction mixture from 0% to 1% at 30°C. In the repeated hydrolysis, glucose was produced successively from the soluble and uncooked starches, and D-MN could be repeatedly used after being recovered from the reaction product by centrifugation at the end of each batchwise hydrolysis.  相似文献   

5.
Novel lipases lip11 and lip12 from Yarrowia lipolytica MSR80 were cloned and expressed in E. coli HB101 pEZZ18 system along with lip2. These enzymes were constitutively expressed as extracellular proteins with IgG tag. The enzymes were purified by affinity chromatography and analyzed by SDS-PAGE with specific activity of 314, 352 and 198?U/mg for Lip2, Lip11 and Lip12, respectively on olive oil. Biochemical characterization showed that all were active over broad range of pH 4.0?C9.0 and temperature 20?C80?°C with optima at pH 7 and 40?°C. All the three lipases were thermostable up to 80?°C with varying t1/2. Activity on various substrates revealed that they were most active on oils?>?triacylglycerides?>?p-np-esters. Relatively Lip2 and Lip11 showed specificity for mid to long chain fatty acids, while Lip12 was mid chain specific. GC analysis of triolein hydrolysis by these lipases revealed that Lip2 and Lip11 are regioselective, while Lip12 is not. Effect of metal ions showed that Lip2 and Lip12 were activated by Ca2+ whereas Lip11 by Mg2+. All were thiol activated and inhibited by PMSF and N-bromosuccinimide. All were activated by non polar solvents and inhibited by polar solvents. Detailed sequence analysis and structural predictions revealed Lip11 and Lip12 shared 61 and 62?% homology with Lip2 (3O0D) and three dimensional superimposition revealed Lip2 was closer to Lip11 than to Lip12 as was observed during biochemical characterization. Finally, thermostability and substrate specificity has been explained on the basis of detailed amino acid analysis.  相似文献   

6.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

7.
It has been found that enantioselectivity of lipases is strongly modified when their immobilization is performed by involving different areas of the enzyme surface, by promoting a different degree of multipoint covalent immobilization or by creating different environments surrounding different enzyme areas. Moreover, selectivity of some immobilized enzyme molecules was much more modulated by the experimental conditions than other derivatives. Thus, some immobilized derivatives of Candida rugosa (CRL) and C. antarctica-B (CABL) lipases are hardly enantioselective in the hydrolysis of chiral esters of (R,S)-mandelic acid under standard conditions (pH 7.0 and 25°C) (E<2). However, other derivatives of the same enzymes exhibited a very good enantioselectivity under nonstandard conditions. For example, CRL adsorbed on PEI-coated supports showed a very high enantio-preference towards S-isomer (E=200) at pH 5. On the other hand, CABL adsorbed on octyl-agarose showed an interesting enantio-preference towards the R-isomer (E=25) at pH 5 and 4°C. These biotransformations are catalyzed by isolated lipase molecules acting on fully soluble substrates and in the absence of interfacial activation against external hydrophobic interfaces. Under these conditions, lipase catalysis may be associated to important conformational changes that can be strongly modulated via biocatalyst and biotransformation engineering. In this way, selective biotransformations catalyzed by immobilized lipases in macro-aqueous systems can be easily modulated by designing different immobilized derivatives and reaction conditions.  相似文献   

8.
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65 degrees C in 3 h in the presence of a molecular sieve (3 angstroms). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).  相似文献   

9.
β-D-Galactosidase (BGAL) from Kluyveromyces lactis was covalently immobilized to functionalized silicon dioxide nanoparticles (10-20 nm). The binding of the enzyme to the nanoparticles was confirmed by Fourier transform-infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Functionalized nanoparticles showed 87% immobilization yield. Soluble and immobilized enzyme preparation exhibited pH-optima at pH 6.5 and 7.0, respectively, with temperature optima at 35 and 40°C, respectively. Michaelis constant (K(m)) was 4.77 and 8.4mM for free and immobilized BGAL, respectively. V(max) for the soluble and immobilized enzyme was 12.25 and 13.51 U/ml, respectively. Nanoparticle immobilized BGAL demonstrated improved stability after favoring multipoint covalent attachment. Thermal stability of the immobilized enzyme was enhanced at 40, 50 and 65°C. Immobilized nanoparticle-enzyme conjugate retained more than 50% enzyme activity up to the eleventh cycle. Maximum lactose hydrolysis by immobilized BGAL was achieved at 8h.  相似文献   

10.
Trypsin was immobilized onto alginic acid-poly(glycidyl methacrylate) graft copolymer (AAGMA). The resulting immobilized enzyme showed 65% of the soluble enzymatic activity. The temperature optimum was shifted by 5 degrees C to a higher value. The pH optimum of immobilized enzyme has also been shifted by 0.5 units toward the alkaline side when compared to that of soluble enzyme. The pH stability and thermal stability are better than that of soluble enzyme.  相似文献   

11.
Cyclodextrin glycosyltransferase catalyzes the formation of a mixture of cyclodextrins from starch by an intramolecular transglycosylation reaction. To manipulate the product specificity of the Paenibacillus sp. A11 and Bacillus macerans cyclodextrin glycosyltransferases towards the preferential formation of gamma-cyclodextrin (CD(8)), crosslinked imprinted proteins of both cyclodextrin glycosyltransferases were prepared by applying enzyme imprinting and immobilization methodologies. The crosslinked imprinted cyclodextrin glycosyltransferases obtained by imprinting with CD(8) showed pH and temperature optima similar to those of the native and immobilized cyclodextrin glycosyltransferases. However, the pH and temperature stability of the immobilized and crosslinked imprinted cyclodextrin glycosyltransferases were higher than those of the native cyclodextrin glycosyltransferases. When the catalytic activities of the native, immobilized and crosslinked imprinted cyclodextrin glycosyltransferases were compared, the efficiency of the crosslinked imprinted enzymes for CD(8) synthesis was increased 10-fold, whereas that for cyclodextrin hydrolysis was decreased. Comparison of the product ratios by high-performance anion exchange chromatography showed that the native cyclodextrin glycosyltransferases from Paenibacillus sp. A11 and Bacillus macerans produced CD(6) : CD(7) : CD(8) : > or = CD(9) ratios of 15 : 65 : 20 : 0 and 43 : 36 : 21 : 0 after 24 h of reaction at 40 degrees C with starch substrates. In contrast, the crosslinked imprinted cyclodextrin glycosyltransferases from Paenibacillus sp. A11 and Bacillus macerans produced cyclodextrin in ratios of 15 : 20 : 50 : 15 and 17 : 14 : 49 : 20, respectively. The size of the synthesis products formed by the crosslinked imprinted cyclodextrin glycosyltransferases was shifted towards CD(8) and > or = CD(9), and the overall cyclodextrin yield was increased by 12% compared to the native enzymes. The crosslinked imprinted cyclodextrin glycosyltransferases also showed higher stability in organic solvents, retaining 85% of their initial activity after five cycles of synthesis reactions.  相似文献   

12.
Lipase (EC 3.1.1.3) is a tri-acylglycerol ester hydrolase, catalysing the hydrolysis of tri-, di-, and mono-acylglycerols to glycerol and fatty acids. To study the effect of adsorption of a lipase obtained from Bacillus coagulans BTS-1, its lipase was immobilized on native and activated (alkylated) matrices, i.e. silica and celite. The effect of pH, temperature, detergents, substrates, alcohols, organic solvent etc. on the stability of the immobilized enzyme was evaluated. The gluteraldahyde or formaldehyde (at 1% and 2% concentration, v/v) activated matrix was exposed to the Tris buffered lipase. The enzyme was adsorbed/entrapped more rapidly on to the activated silica than on the activated celite. The immobilized lipase showed optimal activity at 50 degrees C following one-hour incubation. The lipase was specifically more hydrolytic to the medium C-length ester (p-nitro phenyl caprylate than p-nitro phenyl laurate). The immobilization/entrapment enhanced the stability of the lipase at a relatively higher temperature (50 degrees C) and also promoted enzyme activity at an acidic pH (pH 5.5). Moreover, the immobilized lipase was quite resistant to the denaturing effect of SDS.  相似文献   

13.
研究了用高碘酸钠氧化帆布纤维,使其纤维衍生化成为醛基,与脂肪酶交联进行固定化的过程。通过醛基被交联程度来评价交联过程的优劣。首先对纤维的氧化过程进行了简单优化,进而通过反复交联法与酶蛋白交联。以大豆油和橄榄油水解作为固定化酶的性能评价指标。实验结果表明,通过采用反复交联的方法,可提高载体表面酶蛋白质量分数30%左右。酶活力平均达到4U/cm^2,其对温度、pH的耐受性相比游离酶均有不同程度提高。同时利用油脂在固定化酶过程对酶进行保护,使其对温度、pH等的耐受性进一步增强。在维持较高水解率条件下,可在温和条件下连续反应7批,反应半衰期达140h以上。  相似文献   

14.
Pig muscle lactate dehydrogenase (L-lactate:NAD oxidoreductase, EC 1.1.1.27) was covalently immobilized on polyacrylamide beads containing carboxylic functional groups activated by water-soluble carbodiimide. The effects of immobilization on the catalytic properties and stability of the lactate dehydrogenase were studied. There was no shift in the pH optimum of the immobilized enzyme compared to that of the soluble one. The apparent optimum temperature of the soluble enzyme was 65 degrees C, while that of the immobilized enzyme was between 50 and 65 degrees C. The apparent Km values of the immobilized enzyme with pyruvate and NADH substrates were higher than those of the soluble enzyme. As a result of immobilization, enhanced stabilities were found against heat treatment, changes in pH, and urea denaturation.  相似文献   

15.
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.  相似文献   

16.
Some properties of immobilized alpha-amylase by Aspergillus sclerotiorum within calcium alginate gel beads were investigated and compared with soluble enzyme. Optimum pH and temperature were found to be 5.0 and 40 degrees C, respectively, for both soluble and immobilized enzymes. The immobilized enzyme had a better Km value, but kcat/Km values were the same for both enzymes. Entrapment within calcium alginate gel beads improved, remarkably, the thermal and storage stability of alpha-amylase. The half life values of immobilized enzyme and soluble enzyme at 60 degrees C were 164.2, and 26.2 min, respectively. The midpoint of thermal inactivation (Tm) shifted from 56 degrees C (for soluble enzyme) to 65.4 degrees C for immobilized enzyme. The percentages of soluble starch hydrolysis for soluble and immobilized alpha-amylase were determined to be 97.5 and 92.2% for 60 min, respectively.  相似文献   

17.
《Process Biochemistry》2010,45(3):390-398
A novel approach is proposed to prepare a set of immobilized derivatives of a enzyme covalently rigidified through different regions of its surface. Six different variants of penicillin G acylase (PGA) from Escherichia coli (which lacks Cys) were prepared by introducing a unique Cys residue via site-directed mutagenesis in six different enzyme regions which were rich in Lys residues. All variants exhibited a similar activity and stability compared to those of the native enzyme. Each variant was immobilized on supports having a low concentration of reactive disulfide moieties and a high concentration of poorly reactive epoxy groups. After immobilization at pH 7.0 by site-directed thiol-disulfide intermolecular exchange, derivatives were further incubated at pH 10.0 for 48 h to promote an additional intramolecular reaction between Lys residues of enzyme and epoxy groups of the support. The establishment of at least three covalent attachments per PGA molecule was determined for all immobilized enzyme variants. The different derivatives exhibited diverse stability against several distorting agents and different selectivity in two interesting reactions. The derivative of the PGA variant obtained by replacement of GlnB380 by Cys was the most stable against heat and organic cosolvents: it preserved 90% of the initial activity and was 30-fold more stable than soluble PGA. This derivative also exhibited an improved enantioselectivity in the hydrolysis of chiral esters (E was improved from 8 to 16) and in kinetically controlled synthesis of amides (synthetic yields were increased from 31 to 49%).  相似文献   

18.
A thiol protease purified from mungbean seedlings was immobilized on chitosan beads cross-linked with glutaraldehyde. The yield of the immobilized enzyme was maximum (~99%) at 1% concentration each of chitosan and glutaraldehyde. The immobilized enzyme showed reusability for 15 batch reactions. Immobilization shifted the optimum pH of the enzyme to a more acidic range and enhanced its stability both at acidic as well as alkaline pH values compared to the free enzyme. The stability of the enzyme to temperature and in aqueous non-conventional medium (ethanol and DMSO) was significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation reflected by a higher apparent Km value. This study produced an immobilized biocatalyst having improved characteristics and better operational stability than the soluble enzyme. The increase in stability in the presence of high concentrations of ethanol and DMSO may make it useful for catalyzing organic reactions such as trans-esterification and trans-amidation similar to other cysteine proteinases.  相似文献   

19.
Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa   总被引:1,自引:0,他引:1  
A well-known lipase, Lip 3 of Candida rugosa, was purified to homogeneity from a commercial lipase preparation, using hydrophobic interaction and anion exchange chromatography. Lip 3, which has been reported to act on cholesteryl esters, was also found to be active on plant-derived steryl esters. Lip 3 had optimal activity at pH 5-7 and below 55 degrees C. It was able to hydrolyse steryl esters totally in a clear micellar aqueous solution. However, the action on a dispersed colloidal steryl ester solution was limited and only about half of the steryl esters were degraded. The degree of hydrolysis was not improved by addition of fresh enzyme. The composition of released fatty acids and sterols was, however, almost identical to that obtained by alkaline hydrolysis, showing that all the different steryl esters were hydrolysed equally and that none of the individual components were responsible for incomplete hydrolysis. Thus, it appeared that the physical state of the colloidal steryl ester dispersion limited the action of Lip 3. Wood resins contain both triglycerides and steryl esters among the hydrophobic components, which create problems in papermaking. The simultaneous enzymatic hydrolysis of triglycerides and steryl ester is therefore of considerable interest and Lip 3 is the first enzyme reported to act on both triglycerides and steryl esters.  相似文献   

20.
A cold-active beta-galactosidase of Antarctic marine bacterium Pseudoalteromonas sp. 22b was synthesized by an Escherichia coli transformant harboring its gene and immobilized on glutaraldehyde-treated chitosan beads. Unlike the soluble enzyme the immobilized preparation was not inhibited by glucose, its apparent optimum temperature for activity was 10 degrees C higher (50 vs. 40 degrees C, respectively), optimum pH range was wider (pH 6-9 and 6-8, respectively) and stability at 50 degrees C was increased whilst its pH-stability remained unchanged. Soluble and immobilized preparations of Antarctic beta-galactosidase were active and stable in a broad range of NaCl concentrations (up to 3 M) and affected neither by calcium ions nor by galactose. The activity of immobilized beta-galactosidase was maintained for at least 40 days of continuous lactose hydrolysis at 15 degrees C and its shelf life at 4 degrees C exceeded 12 months. Lactose content in milk was reduced by more than 90% over a temperature range of 4-30 degrees C in continuous and batch systems employing the immobilized enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号