首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14C-labeled compounds. Of these, only [14C]lindane and [14C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14CO2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [14C]aldrin, [14C]dieldrin, [14C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor.  相似文献   

2.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

3.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT.  相似文献   

4.
Effects of Pesticides on Nitrite Oxidation by Nitrobacter agilis   总被引:2,自引:2,他引:0       下载免费PDF全文
The influence of pesticides on the growth of Nitrobacter agilis in aerated cultures and on the respiration of N. agilis cell suspensions and cell-free extracts was studied. Two pesticides, aldrin and simazine, were not inhibitory to growth of Nitrobacter, but five compounds [isopropyl N-(3-chlorophenyl) carbamate (CIPC), chlordane, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDD), heptachlor, and lindane] prevented growth when added to the medium at a concentration of 10 mug/ml. Whereas CIPC and eptam prevented nitrite oxidation by cell suspensions, the addition of DDD and lindane resulted in only partial inhibition of the oxidation. Heptachlor and chlordane also caused only partial inhibition of oxidation, but were more toxic with cell-free extract nitrite oxidase. None of the pesticides inhibited the nitrate reductase activity of cell-free extracts, but most caused some repression of cytochrome c oxidase activity. Heptachlor was the most deleterious compound.  相似文献   

5.
Ninety-three wild-type isolates identified as actinomycetes were tested against 11 organochlorine pesticides (OPs): aldrin, chlordane, DDD, DDE, DDT, dieldrin, heptachlor, and heptachlor epoxides, lindane, and methoxychlor. Qualitative screening agar assays displayed 62-78% tolerance of strains to OPs. Four strains designed M4, M7, M9 and M15 were selected based on multi-OP-tolerance, and identified as members of the streptomycetes group. Different growth profiles were observed in cultures of the four selected streptomycetes cultured in synthetic medium containing 5-50 microg x l(-1) aldrin or chlordane or lindane. Increase of aldrin removal by the selected microorganisms was concomitant with the 4.8-36.0 microg x l(-1) pesticide concentration range. After 72 h of streptomycete M7 growth in synthetic medium containing 48.0 microg x l(-1) aldrin, the remaining OP concentration in the supernatant was approximately 10% of the initial concentration. Also, in stationary growth phase less than 2.5 microg x l(-1) aldrin residual concentration was detected in the medium.  相似文献   

6.
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs.  相似文献   

7.
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance liquid chromatography showed that at least 22 PAHs, including all of the most abundant PAH components present in anthracene oil, underwent 70 to 100% disappearance during 27 days of incubation with nutrient nitrogen-limited cultures of this fungus. Because phenanthrene is the most abundant PAH present in anthracene oil, this PAH was selected for further study. In experiments in which [14C]phenanthrene was incubated with cultures of P. chrysosporium containing anthracene oil for 27 days, it was shown that 7.7% of the recovered radiolabeled carbon originally present in [14C]phenanthrene was metabolized to 14CO2 and 25.2% was recovered from the aqueous fraction, while 56.1 and 11.0% were recovered from the methylene chloride and particulate fractions, respectively. High-performance liquid chromatography of the 14C-labeled material present in the methylene chloride fraction revealed that most (91.9%) of this material was composed of polar metabolites of [14C]phenanthrene. These results suggest that this microorganism may be useful for the decontamination of sites in the environment contaminated with PAHs.  相似文献   

8.
Metabolism of phenanthrene by Phanerochaete chrysosporium.   总被引:10,自引:8,他引:2       下载免费PDF全文
The white rot fungus Phanerochaete chrysosporium metabolized phenanthrene when it was grown for 7 days at 37 degrees C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with [9-14C]phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by high-performance liquid chromatography, and detected by liquid scintillation counting. Metabolites from cultures grown with unlabeled phenanthrene were identified as phenanthrene trans-9,10-dihydrodiol, phenanthrene trans-3,4-dihydrodiol, 9-phenanthrol, 3-phenanthrol, 4-phenanthrol, and the novel conjugate 9-phenanthryl beta-D-glucopyranoside. Identification of the compounds was based on their UV absorption, mass, and nuclear magnetic resonance spectra. Since lignin peroxidase was not detected in the culture medium, these results suggest the involvement of monooxygenase and epoxide hydrolase activity in the initial oxidation and hydration of phenanthrene by P. chrysosporium.  相似文献   

9.
Metabolism of phenanthrene by Phanerochaete chrysosporium.   总被引:9,自引:0,他引:9  
The white rot fungus Phanerochaete chrysosporium metabolized phenanthrene when it was grown for 7 days at 37 degrees C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with [9-14C]phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by high-performance liquid chromatography, and detected by liquid scintillation counting. Metabolites from cultures grown with unlabeled phenanthrene were identified as phenanthrene trans-9,10-dihydrodiol, phenanthrene trans-3,4-dihydrodiol, 9-phenanthrol, 3-phenanthrol, 4-phenanthrol, and the novel conjugate 9-phenanthryl beta-D-glucopyranoside. Identification of the compounds was based on their UV absorption, mass, and nuclear magnetic resonance spectra. Since lignin peroxidase was not detected in the culture medium, these results suggest the involvement of monooxygenase and epoxide hydrolase activity in the initial oxidation and hydration of phenanthrene by P. chrysosporium.  相似文献   

10.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

11.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

12.
Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that [14C]dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.  相似文献   

13.
Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that [14C]dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.  相似文献   

14.
Degradation of the BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes) group of organopollutants by the white-rot fungus Phanerochaete chrysosporium was studied. Our results show that the organism efficiently degrades all the BTEX components when these compounds are added either individually or as a composite mixture. Degradation was favored under nonligninolytic culture conditions in malt extract medium, in which extracellular lignin peroxidases (LIPs) and manganese-dependent peroxidases (MNPs) are not produced. The noninvolvement of LIPs and MNPs in BTEX degradation was also evident from in vitro studies using concentrated extracellular fluid containing LIPs and MNPs and from a comparison of the extents of BTEX degradation by the wild type and the per mutant, which lacks LIPs and MNPs. A substantially greater extent of degradation of all the BTEX compounds was observed in static than in shaken liquid cultures. Furthermore, the level of degradation was relatively higher at 25 than at 37 degrees C, but pH variations between 4.5 and 7.0 had little effect on the extent of degradation. Studies with uniformly ring-labeled [14C]benzene and [14C]toluene showed substantial mineralization of these compounds to 14CO2.  相似文献   

15.
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.  相似文献   

16.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

17.
D Dietrich  W J Hickey    R Lamar 《Applied microbiology》1995,61(11):3904-3909
The white rot fungus Phanerochaete chrysosporium has demonstrated abilities to degrade many xenobiotic chemicals. In this study, the degradation of three model polychlorinated biphenyl (PCB) congeners (4,4'-dichlorobiphenyl [DCB], 3,3',4,4'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl) by P. chrysosporium in liquid culture was examined. After 28 days of incubation, 14C partitioning analysis indicated extensive degradation of DCB, including 11% mineralization. In contrast, there was negligible mineralization of the tetrachloro- or hexachlorobiphenyl and little evidence for any significant metabolism. With all of the model PCBs, a large fraction of the 14C was determined to be biomass bound. Results from a time course study done with 4,4'-[14C]DCB to examine 14C partitioning dynamics indicated that the biomass-bound 14C was likely attributable to nonspecific adsorption of the PCBs to the fungal hyphae. In a subsequent isotope trapping experiment, 4-chlorobenzoic acid and 4-chlorobenzyl alcohol were identified as metabolites produced from 4,4'-[14C]DCB. To the best of our knowledge, this the first report describing intermediates formed by P. chrysosporium during PCB degradation. Results from these experiments suggested similarities between P. chrysosporium and bacterial systems in terms of effects of congener chlorination degree and pattern on PCB metabolism and intermediates characteristic of the PCB degradation process.  相似文献   

18.
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.  相似文献   

19.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

20.
The fate of [14C]heptachlor in Saitama soil and the degradation of [14C]heptachlor in four Japanese field soils over 112 d after application were investigated. Heptachlor was degraded mainly to cis-heptachlor epoxide by a biotic process and to 1-hydroxychlordene by an abiotic process in the field soils. Volatilization of heptachlor and cis-heptachlor epoxide from the soil was observed over the experimental period. The amount of 1-hydroxychlordene produced in the soils appeared to be related to the soil water contents. Because heptachlor and heptachlor epoxides are predicted to volatilize to the atmosphere and to persist in soils, these compounds are thought to spread among Japanese environmental compartments even after a ban on their use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号